

STAGE PFE ANNEE 2010-2011

TITRE:						
Energi	ie et Proce	ssus				
Nom et pr	'énom de l'étu	ıdiant : VIVES	CATALA, Is	arn		
Filière :	□ ASI □ ME	□ GEN □ PIME	□ HOE □ SEM	□ IEE		
PROJET Nom de l'entreprise / du laboratoire : ANTESITE S.A. Adresse : BP 37 38501 Voiron Cedex France						
Nom et prénom du Maître de Projet (dans l'entreprise / le laboratoire) : Directeur Technique: DEMOULIN, François						
Confidenti	alité* :	aucune 🗅	1 an 🔲 5	ans		
* Un rapport confidentiel sera communiqué uniquement à l'enseignant correcteur. Pour le						

^{*} Un rapport confidentiel sera communiqué uniquement à l'enseignant correcteur. Pour le communiquer à toutes autres personnes (étudiant, enseignant, personne extérieure) il faudra une autorisation spéciale accordée par le Maître de Projet dans l'entreprise/le

Groupe ANTESITE

Isarn Vives Català
Etudiant stagiaire INPG - ENSE3

Tuteur: Laurent DAVOUST

Je tiens à remercier tout d'abord Monsieur Demoulin, Directeur Technique de la société ANTESITE, pour m'avoir accueilli au sein de cet établissement.

Sans oublier la Direction, les équipes de production, laboratoire et secrétaires d'Antésite, pour l'accueil, l'intégration, leur accompagnement sur l'ensemble du projet ainsi que l'intérêt que tous ont porté à ma mission.

Aussi mon tuteur de projet, Monsieur Davoust, pour sa collaboration et ses conseils sur le projet.

Sommaire

			Pag.
1.	Introduc	tion	6
2.	Présenta	ation de l'entreprise	7
3.	Etude et	description de processus	8
	3.1. P	rocessus actuelles	8
	3.1.1	Extrait Purifie Liquide	8
	3.1.2	Lignes embouteillage	9
	3.2. E	tude d'amélioration de processus EPL	9
	3.2.1	Chauffage en les percolations	9
	3.2.2	. Centrifugation	9
	3.3. N	ouveau processus	10
	3.3.1	ANTESITE Bio	10
	3.3.2	Extrait Purifie Naturel	11
4.	Etude éi	nergétique	16
		onsommation énergétique	
	4.1.1	. Fuel	16
	4.	1.1.1. Processus EPL	17
	4.	1.1.2. Processus EPN	17
	4.1.2	. Electrique	20
	4.1.3	. Gaz	21
	4.1.4	Consommation énergétique global	21
	4.2. C	ptimisation	22
	4.2.1	. Modifications au circuit vapeur	22
	4.2.2	. Isolation pertes de chaleur	25
	4.3. E	tude technique et économique de l'utilisation de la biomasse	25
	4.4. E	tude technique et économique de l'installation de gaz	28
5.	Tâches	variées de support technique	30
	5.1. S	tation dépuration	30
	5.2. E	conomisassions d'eau rejetée	30
	5.3. A	utres tâches de support technique	31
	5.3.1	Etude des différents compteurs a installer	31
	5.3.2	2. Barrière automatique	31
6.	Conclus	ion	32

7.	Annexes.		33
	7.1.	Schéma processus EPL	33
	7.2.	Réglementation ATEX	34
	7.3.	Détermination zones ATEX	35
	7.4.	Cahier de travail EPN	36
	7.5.	Calculs	37
		7.5.1. Calculs processus EPL	37
		7.5.2. Calculs processus EPN	39
		7.5.3. Calcul dimensionnement évaporateur	42
		7.5.4. Calcul dimensionnement condenseur	45
		7.5.5. Calcul pertes chaleur circuit vapeur	46
	7.6.	Tables thermodynamiques	52
	7.7.	Consommations	55
		7.7.1. Consommation électrique 2010	55
		7.7.2. Consommation électrique différents ateliers	56
		7.7.3. Consommation gaz 2010	59
	7.8.	Schéma circuit vapeur	60
	7.9.	Schéma installation entrée alambic	61
	7.10.	Table PCI	62
	7.11.	Emplacements possibles de la chaudière de biomasse	63
	7.12.	Entreprises contactées	64
8.	Bibliogra	phies	66

Fiche d'Appréciation de l'ingénieur Responsable

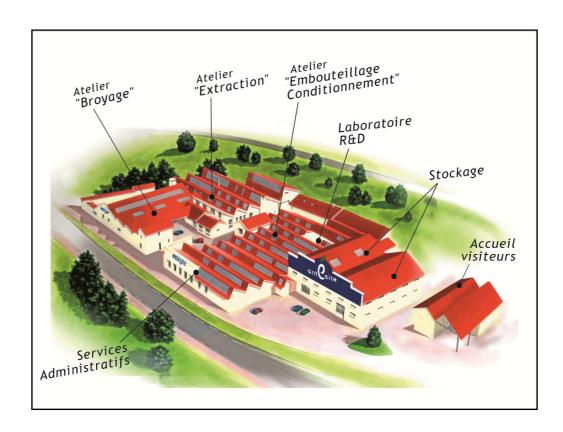
1. Introduction

Ce stage a été effectué dans la société ANTESITE pendant une période de cinq mois, de début février à fin juin 2011. Ce stage de fin d'études représente pour moi une porte qui s'ouvre sur le monde du travail. Cela a été un premier défi, qui m'a permis de découvrir les responsabilités et possibles tâches, qu'un ingénieur doit réaliser dans sa vie professionnelle.

Les principaux objectifs du stage ont été;

- Participer aux tâches effectuées par le Directeur Technique, et prendre part aux éventuels problèmes et inconvénients qui pourraient surgir pendant la production quotidienne.
- L'optimisation du processus d'extraction de la matière première alimentaire (acide glycyrrhizique de la réglisse), sur l'aspect énergétique, étant donné qu'il est l'un des principaux éléments du coût d'extraction.
- Bilan technique et économique de toutes les utilisations d'énergie dans l'entreprise.
- Etude sur la viabilité d'installation d'un nouvel équipement de production de vapeur à partir de l'énergie biomasse, du même bois de réglisse utilisé dans le processus. Afin de baisser le coût énergétique, et dans le même temps éliminer le coût de traitement des déchets.
- Des préconisations d'actions et d'investissements.

Pour la réalisation des divers études, et pour la résolution de différentes problématiques, diverses entreprises spécialisées en chaque domaine ont été contactées, et ces échanges m'ont apporté de l'aide pour la réalisation de mon stage.


Les devis de prix obtenus des différentes entreprises contactées n'ont pas été mis dans ce rapport, afin de préserver la confidentialité des fournisseurs.

2. Présentation de l'entreprise

Créée en 1898 à Voiron par le pharmacien Noël Perrot-Berton, la société Antésite à su se positionner comme le spécialiste français de fabrication d'une gamme d'extraits et d'aromes de réglisse grâce à son savoir-faire exclusif d'extraction aromatique.

L'entreprise, du même nom que son produit, a su, au fil des années, élargir sa gamme de produits en diversifiant ses parfums. Antésite se diversifie également par la commercialisation des principes actifs de la réglisse et des arômes naturels de plantes destinés à l'industrie agro-alimentaire, à la cosmétique et à la pharmacie.

Le groupe Antésite, bien que n'étant pas une grande société, possède une unité de production et un atelier de conditionnement, qui permettent d'embouteiller, pour les clients n'ayant pas les outils appropriés, les produits de leur choix et à leur marque. Leur maind'œuvre se compose d'une trentaine de salariés, et la surface totale construite est de 6.000 m² sur un terrain total de 17.000 m²

3. Etude et description de processus

3.1. Processus actuelles

3.1.1. Extrait Purifie Liquide

EPL→ Extrait Purifie Liquide

Ceci est le processus traditionnel de fabrication du produit Antésite, qui conserve en majeur partie le même savoir- faire depuis son origine, et où sont destinées l'essentiel des ressources de l'entreprise.

Les étapes pour son élaboration sont ;

- 1. Broyage du bois de réglisse
- 2. Infusion, percolation et macération
- 3. Précipitation
- 4. Purification dans le cuiseur
- 5. Filtration
- 6. Refroidissement
- 7. Décantation
- 8. Conditionnement de concentré
- 9. Dilution
- 10. Filtration, stérilisation
- 11. Aromatisation
- 12. Embouteillage
- 13. Stockage

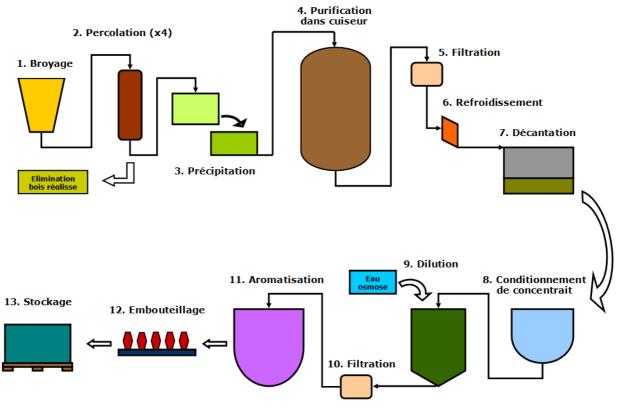


Figure 1, processus EPL

Annexe 7.1. Schéma processus EPL

3.1.2. Lignes embouteillage

Pour diversifier la gamme de produits, l'entreprise a développé un atelier de conditionnement, qui dispose de trois lignes d'embouteillage, pour satisfaire sa propre demande, et celle de quelques clients.

La ligne la plus utilisée est la ligne A, où se fait l'embouteillage des petites bouteilles ANTESITE, mais elle peut être modifiée pour le remplissage de bouteilles de 0,75 et 1 L.

La ligne Noirot, aussi modulable, permet l'embouteillage en flacons de 20 cl ainsi que des bouteilles de 0,75 et 1L, de vin aromatisé et différents cocktails sans alcool.

La troisième ligne, 'Bag In Box' sert pour le remplissage de vin en sacs de 3 et 5 L dans une boîte de carton.

3.2. Etude d'amélioration de processus EPL

C'est une étude préliminaire, réalisée en collaboration avec la responsable de développement du processus. Mon rôle a été de participer aux différents essais pour mieux connaître le processus, et conseiller, pour bien vérifier sa viabilité au niveau énergétique, production et infrastructure.

3.2.1. Chauffage des percolations

Si la percolation est réalisée à une température d'environ 40-50°C le pourcentage d'AG (Acide Glycyrrhizique) extrait augmente, donc nous aurons un rendement sur la matière première supérieure.

Pour cette modification, il est nécessaire de chauffer (environ 60℃) l'eau qui entre dans le percolateur, quand il est déjà plein de bois de réglisse broyé, et aussi fournir le percolateur d'une enveloppe isolante pour éviter les pertes de chaleur et maintenir la température la plus haute et constante possible. Le chauffage de l'eau devrait être fait en profitant de la vapeur produite par la chaudière, qui serait transmise à travers un échangeur.

3.2.2. Centrifugation

C'est une nouvelle technique que nous avons étudié.

Dans le processus traditionnel l'extrait de réglisse est obtenu par récupération du précipité dur, après une dilution, le pH du jus de percolation est descendu à pH 1, et toute l'eau qui reste est éliminé et seulement le précipité est récupéré.

Avec cette nouvelle technique le pH est descendu entre 3 et 4, donc moins de volume d'acide est nécessaire, mais il ne reste pas une masse solide que nous pouvons extraire. Avec un processus de filtration par centrifugation que nous avons essayé, nous obtenons les extraits de réglisse en forme de gâteau mou. Nous avons travaillé à différentes vitesses de rotation pour observer le point optimum de rendement au niveau des matières premières, et aussi au niveau de la production. Finalement nous avons conclu que le filtre approprié est une maille de 5-10µm, et à une vitesse de rotation de 1100tr/min.

Les principaux avantages de cette technique sont que c'est possible de récupérer un plus haute pourcentage d'AG du surnageant, ça veut dire, que pour obtenir la même quantité de produit final, nous avons besoin de moins de kg de matière première.

Figures 2 et 3, centrifugeuse et filtre.

3.3. Nouveaux processus

3.3.1. ANTESITE Bio

L'Antésite Bio est un nouveau produit destiné à un marché de produits bio. L'extraction de la réglisse est faite par l'évaporation de l'eau du jus obtenu après la percolation, au lieu de la précipitation et de la décantation comme dans le processus traditionnel. Dans ce processus, aucun agent chimique n'est utilisé pour la régulation du pH.

Il faut une quantité importante d'énergie, parce qu'une évaporation de 65% du contenu d'eau est nécessaire, afin d'obtenir ainsi un concentré plus dense en extraits de réglisse. Ce processus est réalisé dans un alambic qui utilise la chaleur produite par la chaudière de vapeur. Subséquemment en fonction du niveau de production, un grand débit de vapeur doit fournir le processus, et une grande quantité d'énergie est indispensable.

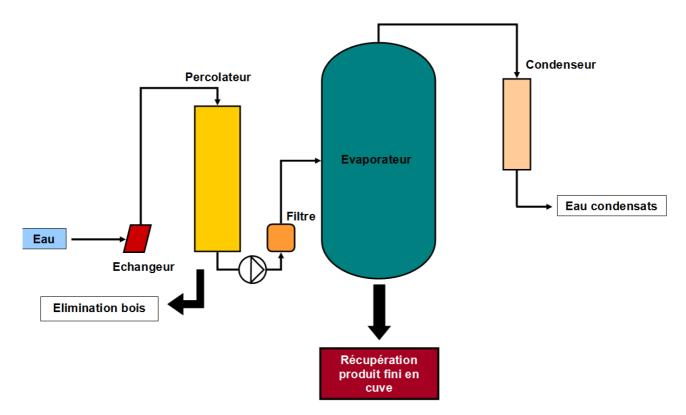
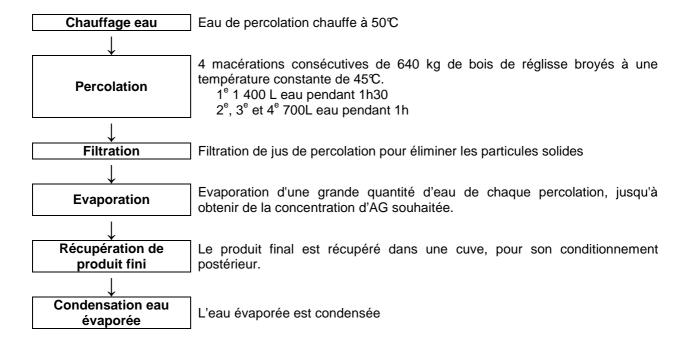



Figure 4, schéma processus bio.

Un essai, à petite échelle a été fait dans un alambic, et nous avons observé que une grande quantité de mousse est formée, donc une injection d'air sera nécessaire, ainsi qu'un mélange constant avec un émulsionneur.

Nous avons prévu que l'infrastructure pour développer ce processus, percolateur, évaporateur, condenseur... sera la même que pour le futur processus EPN. Donc, le dimensionnement sera fait à partir des exigences du processus EPN, dont la production annuelle et les besoins énergétiques sont supérieurs.

Etapes processus BIO

Finalement la dernière partie du processus, est le conditionnement, où le produit est aromatisé, et embouteillé pour ensuite être stocké et distribué.

3.3.2. Extrait Purifie Naturel

EPN→ Extrait Purifie Naturel

C'est un nouveau processus, à mettre en place dans un futur proche, utilisé pour l'extraction de l'arôme du bois de réglisse. Ainsi, le produit final est un arôme naturel de réglisse, qui est vendu à des aromaticiens. C'est un produit très stratégique pour l'entreprise.

La percolation est faite avec un mélange d'eau et d'alcool à 50%. Ensuite, nous réalisons une évaporation de l'alcool et de l'eau jusqu'à ce qu'il reste moins de 10% de la quantité du liquide initial, en fonction de la concentration d'AG souhaitée. C'est un processus complexe à étudier et à projeter dans le futur, du fait de la grand quantité d'alcool qui sera utilisée, et qu'il faudra récupérer avec toutes les mesures de sécurité correspondantes.

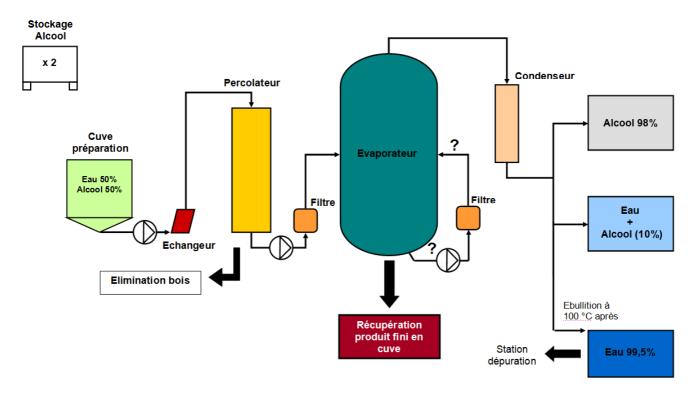
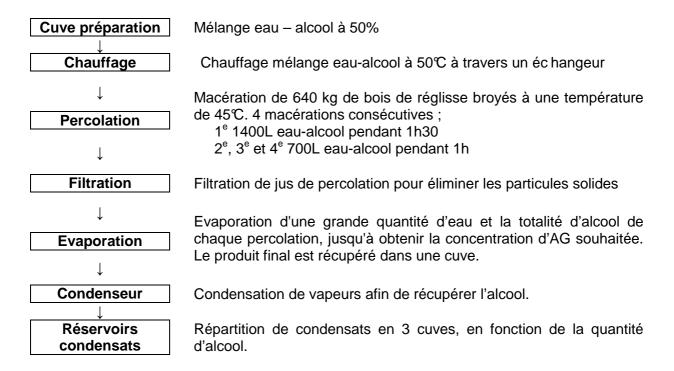



Figure 5, schéma processus EPN. Tout matériel en inox, et validé pour réglementation ATEX

Etapes processus EPN

Réglementation ATEX

La règlementation ATEX (ATmosphères EXplosives) demande à tous les chefs d'établissement de maîtriser les risques relatifs à l'explosion de ces atmosphères au même titre que tous les autres risques professionnels. Pour cela, une évaluation du risque d'explosion dans l'entreprise est donc nécessaire pour permettre d'identifier tous les lieux où peuvent se former des atmosphères explosives.

Conformément à la directive 1999/92/CE et à l'article R.4227-50 du Code du Travail, les emplacements ATEX doivent être subdivisés en zones : 0, 1 ou 2 pour les gaz, 20, 21 ou 22 pour les poussières.

Groupe	Gaz de référence	Energie minimale d'inflammation
I	méthane	300 μJ
IIA	propane, (éthanol)	240 μJ
IIB	éthylène	70 μJ
IIC	hydrogène, acétylène	17 µJ

L'éthanol se trouve dans le groupe T2 de température maximale de surface (300℃)

Nous avons pour objectif de travailler si possible en zones 1 ou 2, où la présence d'alcool et de vapeurs est plus faible, parce que les emplacements définis comme zone 0 sont toujours plus complexes à dessiner et ont donc un coût économique beaucoup plus important.

Un étude complète d'évaluation des risques a été faite par la société APAVE, pour ANTESITE.

Annexe 7.2. Réglementation ATEX

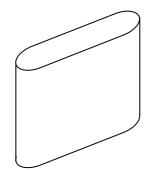
Annexe 7.3. Détermination des zones ATEX

Description préliminaire des appareils a mettre en place

Réservoir alcool

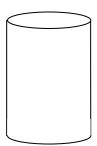
Extérieur d'acier inox, important d'éviter les charges statiques. Installation de canalisation jusqu'à la cuve de préparation. Capacité totale 10m³

Cuve préparation


Cuve de préparation pour le mélange eau-alcool à 50%. Capacité de 2 m³

Echangeur

Le but de l'échangeur est de monter la température du mélange eau-alcool jusqu'à 50° (ΔT =40°C), pour l'utiliser tout de suite après dans le percolateur. Au cours de la première percolation il faut échanger 1 400 L, puis au cours des trois percolations suivantes 700 L chacune.


Au cours de cette phase, une grande quantité d'énergie doit être approvisionnée, car la température doit monter d'environ 40°C en 10 ou 15 minutes.

Percolateur

$$V = 2,2764 \text{ m}^3$$

Masse bois = 640 kg
 $Volume \ eau + alcool = 1400+700+700+700$

Si nous utilisons un percolateur cylindrique;

V = 2,2764 m³
Même hauteur que l'actuelle
$$\rightarrow \emptyset$$
 = 1,3459 m
 \rightarrow H = 1,6

On prévoit de récupérer 160 L d' EPN au cours de chaque période de percolation (4 macérations)

Caractéristiques percolateur;

- Enveloppe isolante
- Injection d'azote, pour éliminer oxygène (définition zone 1)
- Chauffage enveloppe
- Couverture étanche (monter ou diminuer la pression intérieure)
- Injection vapeur (nettoyer l'alcool résiduel dans le bois)
- Système pivotant pour le vidage du bois.

Vidage et récupération du bois

Dans un percolateur de 640 kg de bois, on récupère une masse de 1 600 kg, qu'on jette dans une benne (60% d'eau)

Options;

- 1- Utiliser la même benne que pour le processus EPL
- 2- Installation d'une benne spécifique pour le processus EPN

Valeur énergétique de 640 Kg de bois de réglisse sec ;

E = Masse-PCI

 $E = 640 \text{kg} \cdot 14 \text{MJ/kg} = 8960 \text{ MJ}$

Filière ME STAGE ENERGIE ET PROCESSUS

Filtre

Filtrer jus de percolation avant d'entrer dans l'évaporateur, pour évacuer les petites particules solides de bois de réglisse.

Filtre de maille ou métallique d'environ 10-30 µm.

Evaporateur

Capacité = 1 m³

Ø = 0.990 m

H = 1,10 m *Les dimensions doivent être liées à la surface d'échange pour nos besoins.

Caractéristiques de l'évaporateur ;

- Enveloppe isolante
- Chauffage de l'enveloppe
- Etanche pour utilisation à ± 1 bar, et éviter fuites d'alcool
- Injection d'azote (définition zone 1)
- Racleur, mélangeur, émulsionné...
- Capable d'évaporer au moins 700 L/h

Condenseur

La récupération du maximum de la quantité d'alcool est un sujet important, à cause du coût élevé de ce produit. Le condenseur est chargé de récupérer en premier l'alcool, puis dans une deuxième étape, l'eau.

Un système de réfrigération d'eau doit évacuer suffisamment de calories pour permettre son fonctionnement correct. Le condenseur à installer serait cylindrique de tubes verticaux, avec la circulation d'eau froide à contrecourant.

Réservoir récupération alcool (>95%)

Au cours de la première étape de vaporisation nous monterons jusqu'à 78% pour évaporer seulement l'alcool, et ses condensats seront récupérés dans le réservoir. Capacité= $2m^3$

Réservoir récupération eau + alcool (10%)

Quand l'eau sera évaporée il y aura une petite partie d'alcool, environ 10%, qui restera dans cette eau. Il faut la traiter pour récupérer le maximum d'alcool. Capacité = 2m³

Réservoir récupération eau (99,5%)

Finalement on condensera l'eau, puis nous traiterons cette eau à la station d'épuration, pour ensuite la rejeter sur le réseau de la collectivité. Il restera une petite quantité d'alcool dans cette eau que nous ne pourrons pas récupérer (0,05%). Capacité = 2m³

Annexe 7.4. Cahier de travail EPN

4. Etude énergétique

4.1. Consommation énergétique

4.1.1. Fuel

• Caractéristiques chaudière vapeur

- Caracteriotiques criadaicre vapear		
Туре	SAPCA TCV 540	
Pression nominale	9 bar	
Pression fonctionnement	7-8 bar	
Puissance	540 Th/h (1Th = $4.18*10^3$ kJ) \rightarrow 627,6 kW	
Température sortie	170-175℃	
Température entrée	60-80℃	
Débit	0,9 t/h → 0,25 kg/s	
Capacité chaudière	2,15 m ³	
Surface de chauffe	27 m^2	
Année	1984	

Brûleur

Modèle		RIELLO RL 70	
Туре		660 T1	
Puissance théo	rique	474 – 830 kW	
Gicleurs	Gicleur 1	$5.00 \rightarrow 23 \text{ kg/h}$	Total = 55 kg/h
Gicieurs	Gicleur 2	$7.00 \rightarrow 32 \text{ kg/h}$	10tal = 55 kg/11
Puissance réell	е	55 kg/h → 570 kW	
Puissance électrique absorbe		1400 W	
Pompe		107 kg/h	

Caractéristiques chaudière du chauffage

• Caracteriotic des chadalers da chadhage			
Type	SAPCABLOC		
Pression nominale	6 bar		
Pression fonctionnement	3.4 bar		
Puissance	460 Th/h (1Th = $4.18*10^3$ kJ) → 534 kW		
Température sortie	70℃		
Température entrée	53℃		
Année	1991		

Brûleur

Modèle		ELCO 3.60-2D	
Туре		EL 3.60-2D	
Puissance théo	rique	390 – 585,6 kW	
Cialarma	Gicleur 1	27 kg/h	Total = 40-60 kg/h
Gicleurs	Gicleur 2	13 - 33 kg/h	10tal = 40-60 kg/ll
Puissance réell	е	390 – 585,6 kW	
Puissance électrique absorbe		920 W	
Pompe		90 kg/h	

A travers un contrôle périodique du niveau des réservoirs de fuel, et observant les factures des derniers achats, j'ai estimé que la consommation de fuel annuelle de l'entreprise est d'environ 60 000 L. La plus grosse partie, environ 40 000 L, est utilisée par la chaudière de chauffage, et les 20 000 L restants, sont brûlés à la chaudière de production de vapeur.

4.1.1.1. Processus EPL

Pour le processus EPL nous utilisons l'énergie en forme de vapeur en deux parties différentes. Dans le cuiseur, pour le procédé de hausse et abaissement de la température avec les variations correspondantes de pH. Et aussi dans les bassins de purification, pour nettoyer et conditionner le produit avant sa dilution.

	Energie	Puissance chaudière	L fuel
Cuiseur	2006,4 MJ	174,2 kW	89,6 L
Bassins purification	418 MJ	145,1 kW	14,9 L
Totale	2424,4 MJ	319,3 kW	104,5 L

Normalement les deux processus ne sont pas utilisés dans le même temps, donc, nous avons besoin d'une puissance supérieure à 300 kW de la chaudière seulement au cours de moments ponctuels.

Si 100 jours de production par année → 10450 L/an

Cette consommation a une forte augmentation quand nous prenons en compte aussi les pertes de chaleur, et l'énergie nécessaire pour le nettoyage des appareils après chaque cycle de production. Finalement l'estimation de consommation annuelle est d'environ 20.000 L du fuel domestique.

Annexe 7.5.1. Calcul énergétique EPL

4.1.1.2. Processus EPN

Pour le processus EPN, la vapeur serait utilisée pour chauffer le mélange eau-alcool à 50℃ à travers l'échangeur, mais la plus grande partie d'énergie serait dépensée dans l'évaporateur, où nous souhaitons évaporer environ 700L en une heure.

	Energie	Energie chaudière	Puissance	L fuel
Echangeur	258,216 MJ	403,5 MJ	286,9 / 143,45 kW	11,5 L
Evaporateur	4480,4 MJ	7000 MJ	311,14 kW	200 L
Total	4738,616 MJ	7403,5 MJ	598,04 / 454,59 kW	211,5 L

Par jour de travail (4 percolations)

Fuel annuelle \rightarrow 211,5 L x 200 jours = 42300L

Annexe 7.5.2. Calcul énergétique EPN

Dimensionnement évaporateur

L'évaporateur est l'élément le plus complexe et le plus important du processus. C'est lui qui régule le rythme de production, et c'est l'élément de l'usine qui consommera la plus grande quantité d'énergie. C'est important de faire le dimensionnement correctement, parce que c'est un équipement très particulier fait spécialement selon nos spécifications.

Energie nécessaire à fournir pour l'évaporation dans le processus EPN;

Puissance = 311,14 kW

Energie = 1.120.104 kJ

La géométrie de l'évaporateur est formée par un cylindre et une demi-sphère en dessous, et nous souhaitons un volume total égal à 1 m³.

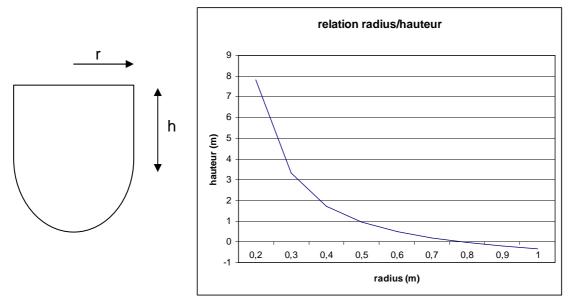


Figure 6, graphique relation radius / hauteur pour un volume de 1m³

Ce graphique représente la relation entre le rayon de l'évaporateur et sa hauteur, pour avoir toujours un volume de 1m³. Comme nous l'observons, les dimensions géométriques entre 0,5m de rayon et 1m de hauteur semblent assez correctes pour bien dimensionner les appareils. Il faut cependant vérifier si ces dimensions permettent le transfert thermique.

Nous avons fait une première estimation pour comparer différentes géométries, diamètres de 0,8m, 1m, et 1,2m. A une pression de vapeur de 2,6 bars. Nous avons calculé la puissance transmise pour la surface cylindrique et la surface sphérique avec une épaisseur de 2mm.

Diamètre	$oldsymbol{\Phi}_{cyl}$	Φ_{sph}	$oldsymbol{\Phi}_{ ext{totale}}$
0,8m	706,954 kW	164,684 kW	871,638 kW
1m	482,787 kW	257,146 kW	739,933 kW
1,2m	298,233 kW	370,125 kW	668,358 kW

La relation entre la puissance échangée et le diamètre est inversement proportionnelle due au fait que si le diamètre est plus grand, la surface totale de l'enveloppe de l'évaporateur est plus petite, donc on aura un transfert thermique plus petit.

Tables comparatives de transfert thermique, si diamètre est 1m, et épaisseurs 2mm, 5mmm et 10mm.

Vapeur 2,6 bars ;

Epaisseur	$oldsymbol{\Phi}_{cyl}$	Φ_{sph}	$\Phi_{ ext{totale}}$
2mm	482,787 kW	257,146 kW	739,933 kW
5mm	274,229 kW	146,457 kW	420,686 kW
10mm	159,964 kW	85,839 kW	245,803 kW

Vapeur 2 bars ;

Epaisseur	Φ_{cyl}	$oldsymbol{\Phi}_{sph}$	$oldsymbol{\Phi}_{ ext{totale}}$
2mm	394,728 kW	210,249 kW	604,977 kW
5mm	225,089 kW	120,217 kW	345,305 kW
10mm	131,582 kW	70,612 kW	202,194 kW

Vapeur 1 bar ;

Epaisseur	$oldsymbol{\Phi}_{cyl}$	$oldsymbol{\Phi}_{\sf sph}$	$oldsymbol{\Phi}_{ ext{totale}}$
2mm	236,578 kW	126,015 kW	362,593 kW
5mm	135,556 kW	72,401 kW	207,957 kW
10mm	79,455 kW	42,640 kW	122,094 kW

Comme nous l'espérions, nous pouvons transmettre une plus grande puissance si la pression du vapeur est plus haute, donc la vapeur à plus haute température aura plus d'énergie thermique. Et si l'épaisseur est plus fine, plus de calories seront transmisses, parce que la résistance thermique sera plus faible.

Donc, si nous utilisons une vapeur à une pression de 2 bars ou plus, l'épaisseur jusqu'à 5mm serait suffisante. Mais si l'épaisseur entre le circuit vapeur, et l'intérieur de l'évaporateur est supérieure à 10mm, nous ne pourrons pas transmettre toute la chaleur souhaitée.

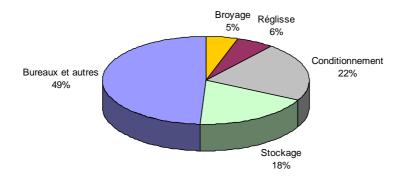
Annexe 7.5.3. Calcul dimensionnement évaporateur

Dimensionnement condenseur

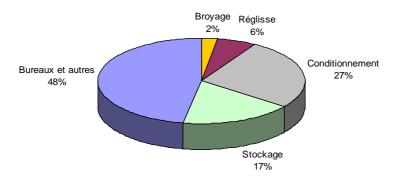
Le condenseur serait un cylindre de tubes verticaux avec une circulation à contrecourant de l'eau froide. Le volume total à condenser est de 700L pendant un temps maximal d'une heure.

	Energie à extraire	Puissance	Débit
Condenseur	1059,856 MJ	294,04 kW	7,244 m ³ /h

Annexe 7.5.4. Calcul dimensionnement condenseur


4.1.2. Electrique

L'énergie électrique étant utilisée pendant toutes les étapes des différents processus, j'ai effectué une étude de la répartition des dépenses électriques dans les différents secteurs de production, pendant les mois de janvier et février.


	Jan	vier	Février		
	Consommation	Coût	Consommation	Coût	
Broyage	980,32 kWh	98,99 €	490,16 kWh	49,50 €	
Réglisse	1130,2 kWh	114,13 €	1222,4 kWh	123,44 €	
Conditionnement	4177,73 kWh	421,87 €	5431,71 kWh	548,49 €	
Stockage	3520 kWh	355,45 €	3520 kWh	355,45 €	
Bureaux et autres	9518,2 kWh	961,15 €	9518,2 kWh	961,15€	
Totale	19326,45 kWh	1951,58 €	20182,47 kWh	2038,03 €	

Les consommations pendant janvier et février suivent une ligne très similaire, la plus grande partie est dépensée dans les bureaux, et autres. Cela inclue l'éclairage extérieur et intérieur, la ventilation ainsi que la réfrigération. Une fraction importante est également dépensée pour le conditionnement, et le stockage. Finalement le broyage et la réglisse qui sont utilisés moins régulièrement, représentent la fraction plus petite.

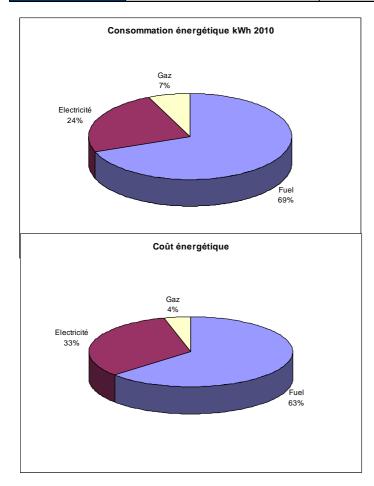
Consomation électrique Janvier

Consommation électrique Février

Annexe 7.7.1. Consommation électrique 2010

Annexe 7.7.2. Consommation électrique différents ateliers

4.1.3. Gaz


Actuellement le gaz représente une petite fraction de l'énergie consommée dans l'usine. Il est utilisé dans une petite chaudière de 28 kW pour chauffer le processus de pasteurisation des différents produits. La consommation annuelle de gaz est d'environ 5122m³, soit l'équivalent énergétique de 55794 kWh.

Annexe 7.7.3. Consommation gaz 2010

4.1.4. Consommation énergétique global

Ici une comparaison de la consommation annuelle de chaque source énergétique. Les données ont été obtenues des factures de fuel, électricité et gaz de l'année 2010. Donc, avec ces données nous pouvons estimer déjà, qu'avec les nouveaux processus, on aurait un incrément très considérable de la consommation de fuel, et aussi de son coût économique.

Energie	Consommation annuelle	Prix unitaire	Coût
Fuel	570,657 MWh	0,05993 €/kWh	34198,50 €
Electricité	198,269 MWh	0,08853 €/kWh	17553,17 €
Gaz	55,794 MWh	0,04040 € /kWh	2254,01 €
Totale	824,72 MWh	0,06295 €/kWh	54005,68 €

En termes de kWh, c'est le fuel qui approvisionne environ 70% de l'énergie totale de l'usine. Par contre, l'électricité représente un quart, et le gaz seulement moins de 10%.

En termes économiques, chaque fraction reste semblable à sa consommation. Cependant, comme on peut le voir sur le graphique suivant, le coût par kWh a une grosse variation selon la source énergétique, plus particulièrement entre le gaz et l'électricité.

Sur le prix unitaire par kWh nous avons une grande différence. L'électricité est ce qui coûte le plus cher, deux fois plus que le gaz. Le fuel en 2010 a été plus économique que l'électricité, mais maintenant en 2011, le coûit par kWh a une valeur proche du coût électrique.

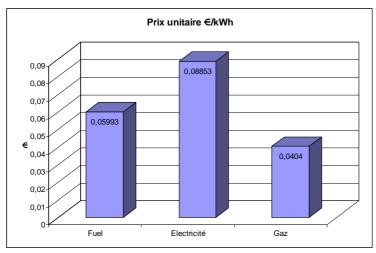


Figure 7, comparaison coûts €/kWh des différentes sources énergétiques

4.2. Optimisation

4.2.1. Modifications au circuit de vapeur

La production de vapeur d'eau se fait par une chaudière à fioul domestique avec une puissance maximale de 620 kW et un débit total de 0,9 t/h. Mais notre consommation nominale est en dessous de ces valeurs (environ 0,3 t/h). À la sortie de la chaudière nous obtenons une vapeur saturée à 8-9 atm (170 °C), qui passe à travers une panoplie pour réduire la pression jusqu'a 2,5 bars et être distribuée dans le circuit.

La plus grand partie de cette vapeur est utilisée pour alimenter un cuiseur, une autre partie est destinée à des bassins pour chauffer le produit directement par injection, et une plus petite partie s'utilise sporadiquement en différents appareils (alambiques, cuves, mélangeur...). Après les condensats sont conduits à un réservoir pour rentrer à la chaudière.

Modifications à la chaudière

- Installation d'un compteur du débit de fioul qui entre dans le brûleur.
- Installation d'un compteur d'eau pour les condensats qu'entrent à la chaudière, et de cette façon connaître de débit de vapeur produit.
- Changer les soupapes de sécurité, et modification des tuyaux en amont pour une meilleure évacuation de la vapeur condensée.
- Changer le joint d'étanchéité.

Modifications à la panoplie

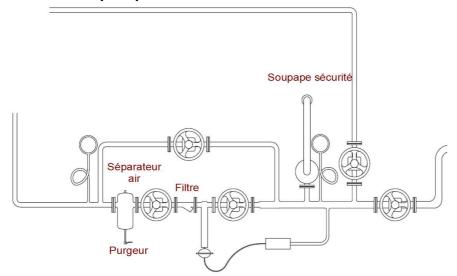


Figure 8, détail de la panoplie de vapeur à la sortie de la chaudière

- Installation d'un séparateur d'air et purgeur, attachés au séparateur.
- Modifier l'inclination du filtre à 90°.
- Changer la soupape de sécurité de 3,5 bars pour avoir le certificat réglementaire.

Cuiseur

- Soupape de sécurité parce que la relation pression volume des tuyaux est supérieure à 90 bars x litre
- Installation d'un filtre, un purgeur et un clapet anti- retour à la sortie des condensats.
- Installation d'un thermomètre et d'un manomètre à l'entrée du cuiseur.
- Installation d'une vanne de régulation automatique pour un contrôle plus efficace du processus.
- Robinet de vidage pour l'évacuation des condensats lors de la mise en service de l'équipement.
- Valve de vide pour éviter une sous pression dans le circuit de vapeur quand l'entrée de vapeur est fermée.

Circuit de tuyaux

- Isolation de tout le circuit
- Changer les tuyaux à un diamètre de 80 mm à la sortie de la chaudière si on veut un débit de vapeur supérieur à 300 kg/h
- Modifier les connections et bifurcations des tuyaux pour obtenir une vapeur de meilleure qualité, et éviter de prendre des condensats

Installation d'un thermomètre et un manomètre à la bifurcation alambiques – bassins.

Alambics

- Installation d'un thermomètre et un manomètre pour la vapeur d'entrée à chaque alambique.
- Installation de purgeur à la sortie.
- Installation d'un clapet anti- retour après le purgeur.

Mélangeur

- Installation d'un filtre, un purgeur et un clapet anti- retour à la sortie de condensats.
- Installer une tuyauterie pour le retour des condensats.

Bassins précipitation

- Installation d'un filtre alimentaire de 2 μm
- Changer à tuyaux inox, pour satisfaire la réglementation alimentaire.
- Installation d'un thermomètre et un manomètre après le filtre alimentaire.

Réservoir condensats

 Isolation et couverture de tout le réservoir, pour éviter au maximum le refroidissement des condensats.

Adoucisseur

- Etudier un bon traitement de l'eau
- Inhibiteur O₂
- Remonteur de pH

Appareils a mettre en place

Appareil	Quantité	Réf.
Thermomètres	7	1, 2, 4, 6, 8, 10, 11
Manomètres	5	3, 5, 7, 9, 12
Filtres	2 (Ø = 34mm)	13, 27
Purgeur	5	14, 19, 21, 24, 28
Clapet	4	15, 22, 25, 29
Soupape sécurité	2	16, 17
Séparateur air	1	18
Filtre alimentaire	1	30
Tuyauterie inox	$20 \text{ m x } \emptyset = 42 \text{mm}$	31
Tuyauterie fonte	20m x Ø = 34mm	26

Annexe 7.8. Schéma circuit vapeur

Annexe 7.9. Schéma installation entrée alambic

4.2.2. Isolation pertes de chaleur

La chaudière produit la vapeur saturée à une pression de 8 bars, mais cette vapeur est dépressurisée jusqu'à 2,6 bar, à travers un détenteur, pour être distribuée par le circuit aux différents appareils. Quand la vapeur condense, elle est conduite par le circuit de retour de condensats, à un petit réservoir, et ensuite, elle arrive dans la chaudière.

A la fois le circuit de vapeur, comme celui de condensats, ne sont pas isolés, donc nous avons réalisé une estimation de ces pertes calorifiques en une journée de travail.

	Pertes	L gazole	€ de pertes	% Energie totale
Sans isolant	271,78kW·h	34,81 L	25,76€	15%
Avec isolant	41,2kW·h	5,28 L	3,9€	2,26%

Epargne par jour 25,76 - 3,9 = 21,86€

Il faut trouver la température de surface des tuyaux, pour connaître l'isolant adéquat. Coût installation isolats = 300€ amortissement en 13 ou 15 jours de fonctionnement.

Annexe 7.5.5. Calcul pertes chaleur du circuit vapeur

4.3. Etude technique et économique de l'utilisation de la biomasse

Aujourd'hui, le bois est traité comme un déchet. Nous pensons donc que l'utilisation de ce bois comme biomasse est un sujet intéressant.

Pour calculer la puissance de la chaudière nous avons fait une estimation de la puissance énergétique dont nous aurions besoins pour le nouveau processus EPN.

Les calculs sont faits en supposant que nous avons séché le bois, et que leur PCI est de 4kWh.

Consommations énergétiques

	Hiver		Eté		Totale	
	kWh	Kg bois	kWh	Kg bois	kWh	Kg bois
Chauffage	400.000	100.000	0	0	400.000	100.000
EPL	50.000	12.500	150.000	37.500	200.000	50.000
EPN	195.000	48.750	195.000	48.750	390.000	97.500
Totale	645.000	161.250	345.000	86.250	990.000	247.500

^{*}supposant PCI = 4kWh/kg = 14400kJ/kg

Déchets du bois de réglisse produits

	Hiver		Eté		Totale	
	Kg bois	kWh	Kg bois	kWh	Kg bois	kWh
EPL	60.000	240.000	90.000	360.000	150.000	600.000
EPN	64.000	256.000	64.000	256.000	128.000	512.000
Totale	124.000	496.000	154.000	616.000	278.000	1.112.000

^{*}supposant PCI = 4kWh/kg = 14400kJ/kg

Totaux

	Besoins en kg bois	Déchets kg bois
Hiver	161.250 kg	124.000 kg
Eté	86.250 kg	154.000 kg
Totale	247.500 kg	278.000 kg

Théoriquement nous aurions assez de bois pour couvrir nos besoins énergétiques.

Stockage

	Kg bois	Volume
Hiver	0	0
Eté	67.750 kg	$67.750/190 = 360 \text{m}^3$

Il faut stocker 154.000 - 86.250 = 67.750 kg de bois sec pendant l'été, pour le brûler en hiver.

Caractéristiques bois de réglisse

Les déchets de bois sont obtenus après le processus de percolation et infusion du bois de réglisse, donc le pourcentage d'humidité est très élevé, et il faut installer un système de séchage pour la combustion et le stockage.

	Sortie (très humide)	Après séchage
Humidité	70%	Entre 0% et 15%
Poids spécifique	550 kg/m³	190 kg/m ³
Pouvoir calorifique	2 kWh/kg	4 kWh/kg

Ces photos sont les déchets de bois qui sortent du processus ;

Figure 9, Photo de bois humide, après la percolation

Figure 10, photo de bois séché, humidité faible.

Puissance chaudière

Le maximum de puissance utilisée, intervient certain jours d'hiver lorsque nous utilisons le chauffage, et les deux processus au même temps. Cette puissance serait d'environ 700kW, à une pression de 8-10 bars, pour travailler à une pression dans le circuit de distribution de 3 bars.

Bien que nous disposions d'une puissance totale supérieure à 1000kW avec les deux chaudières, nous n'utilisons pas la totalité de cette puissance, en fait, les deux chaudières sont utilisées en même temps certain jours d'hiver. Il serait donc intéressant d'étudier la viabilité de l'installation d'une chaudière à vapeur à partir de la biomasse, connectée à l'actuel circuit de vapeur, et avec un échangeur afin d'utiliser la chaleur pour chauffer l'usine.

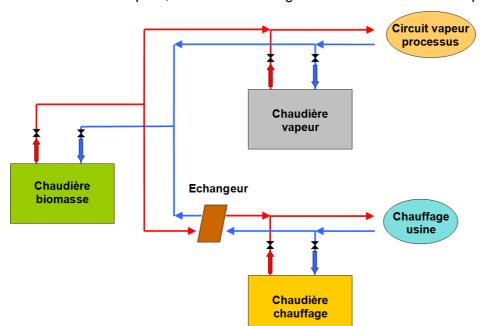


Figure 11, schéma Circuit chauffage et vapeur avec une chaudière de biomasse

A partir des offres de prix que nous avons reçu des entreprises spécialistes en biomasse (MTCB), et fabricants de chaudières (UNICONFORT), nous pouvons estimer une inversion environ 150.000 à 200.000€ pour une installation à satisfaire nos besoins énergétiques. Mais il faut résoudre la problématique de la trop haute humidité de bois pour assurer le correct et efficient fonctionnement de ce type. La solution serait de sécher à travers un cylindre horizontal, et ouvert qui tourne avec une ventilation constante, pour obtenir à la fin, un bois avec une humidité la plus basse possible, et permettant aussi son stockage.

Il est important aussi de mentionner un autre grand avantage de brûler les déchets de bois dans la même usine: aujourd'hui, ils font appel à une entreprise de traitement des résidus, ce qui engendre un coût économique important, qu'il serait intéressant de diminuer.

Nous avons étudié les différents emplacements disponibles pour l'installation de tous les équipements, cela permet donc de voir le dimensionnement de ces installations, et ses possibles inconvenances.

Annexe 7.9. Table PCI des différents bois et combustibles.

Annexe 7.10 Emplacements possibles de la installation.

Filière ME STAGE ENERGIE ET PROCESSUS

4.4. Etude technique et économique de l'installation de gaz

La tuyauterie de gaz actuelle de l'usine n'est actuellement pas adaptée pour un éventuel changement des brûleurs de fuel à gaz. Il est donc important d'étudier la viabilité de cette installation.

Nous avons deux possibilités de connexions au réseau de distribution de GDF. Nous attendons maintenant les conseils d'une entreprise qui fait ce même type d'équipement.

Pour cette étude, j'ai fait un premier calcul avec les consommations actuelles, mais j'ai pensé qu'il convenait de faire une étude aussi des futures consommations avec le nouveau processus EPN.

Consommation fuel actuelle \rightarrow 60000L \rightarrow 585600 kWh annuels

	Hiver	Eté	Totale L	Totale kWh
Chauffage	40000	0	40000	390400
Vapeur EPL	5000	15000	20000	195200
Totale L	45000	15000	60000	
Totale kWh	439200	146400		585600

^{*}PCI fuel domestique 9,76 kWh/L

Prix gaz naturel (selon GDF, à partir Avril 2011)

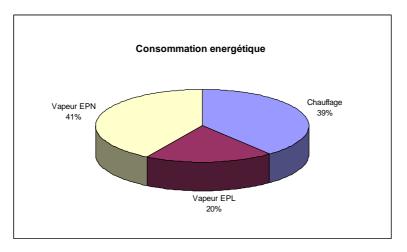
	Hiver	Eté
Prix €/kWh	0,04388	0,02925

^{*}Prix abonnement annuel 946,32€

Coût économique

	Hiver kWh	Eté kWh	m³	Coût €
Chauffage	390400	0	35751	17130,75
Vapeur EPL	48800	146400	17875,5	6423,54
Coût €	19272,10	4282,20	53626,5	23554,30

Coût totale annuelle gaz = 23554,30 + 946,32 = 24500,62€


Coût annuel fuel = 44400€ (approximatif)

Economies = $44400 - 23554,30 = 20845,7 \le$

Avec processus EPN

	kWh Hiver	kWh Eté	Totale kWh
Chauffage	390400	0	390400
Vapeur EPL	48800	146400	195200
Vapeur EPN	205653	205653	411305
Totale kWh	644853	352053	996905

^{*}Coefficient conversion 10,92 kWh/m³

	Hiver kWh	Eté kWh	m³	Coût €
Chauffage	390400	0	35751	17130,75
Vapeur EPL	48800	146400	17875,5	6423,54
Vapeur EPN	205653	205653	37665,3	15039,4
Coût €	28296,15	10297,55	91291,8	38593,7

Coût total annuel gaz = 38593,7 + 946,32 = 39540,02€

Coût annuel fuel = 75702€ (approximatif)

Economies = 75702 - 39540,02 = **36161,98€**

5. Tâches variées de support technique

5.1. Station dépuration

Contrôle du débit de vidage de la plante de dépuration et traitement de l'eau résiduelle du processus. La mission de cette installation est de faire une régulation du pH de l'eau jetée, qui doit toujours être comprise entre 5,5 et 8,5. Il est interdit d'envoyer un débit d'eau hors de ces valeurs. La capacité totale de la station est de 80m³, et la régulation de pH est faite par injection d'acide sulfurique (H₂SO₄ au 98%) si la valeur du pH est supérieure à 8.5. Par contre si la valeur est inférieure à 5.5 il y a alors une injection de soude pour monter le pH.

L'eau envoyée de la station d'épuration à la collectivité municipale a un coût de 8€/m³, et l'entreprise est limitée à rejeter un volume maximal de 30m³ par jour en hiver, et 40 m³ en été. De ce fait, il faut réguler à tout moment le débit et le pH, afin d'économiser le maximum d'eau possible.

5.2. Economies d'eau rejettée

Optimisation volume d'eau rejetée à la station d'épuration

L'origine de l'eau que nous envoyons à la station d'épuration est due à différentes causes ou parties distinctes du processus.

Eau processus

Nous ne pouvons pas économiser d'eau durant cette partie. C'est l'eau nécessaire pour faire les percolations, et différentes précipitations. Cette eau est la plus acide ou basique selon le processus.

Eau nettoyage

Le nettoyage quotidien des bassins, cuves, outils, sols... est obligatoire pour chaque production. Mais une grande partie de l'eau peut être économisée si nous utilisons des appareils à jet d'eau sous pression.

Echangeur refroidissement après cuisson

Actuellement, l'eau de refroidissement est envoyée dans un bassin afin d'être utilisée pour le nettoyage ou la réfrigération. Lorsque le bassin est plein (environ 2m³), nous envoyons l'eau chaude directement à la station d'épuration. Donc il serait intéressant d'installer un réservoir d'une capacité supérieure, d'environ 3 ou 4 m³.

Refroidissement mélangeurs purification

Il est possible ici de faire une plus grande économie. Cette eau est seulement utilisée pour refroidir la cuve de la friction entre le racleur et le mur de la cuve. La chaleur à évacuer est très faible, donc la solution est d'installer un circuit de recirculation de l'eau, un petit réservoir d'environ 200 ou 300 litres serait convenable.

Le débit d'eau utilisée est de 350 L/h,

350L/h pendant 40 heures → 14 m³

14 m³ pour 60 productions annuelles → 840 m³

A 8€ par m³ → 6720 €/an

Figure 13, détail du tuyau de sortie d'eau

Figure 12, mélangeur à réfrigérer

5.3. Autres taches de support technique

5.3.1. Etude des différents compteurs à installer

Dans l'atelier de conditionnement et embouteillage il faut disposer de différents compteurs. L'objectif de ces appareils est de bien contrôler les quantités des produits, pour faire les mélanges correspondants, aromatisations et préparations en cuves, ainsi que pour vérifier les bonnes quantités de produits réceptionnées.

Nous avons décidé d'installer trois débitmètres de contrôle automatisés pour contrôler les processus, ainsi que différents compteurs mécaniques avec affichage digital pour vérifier les litres de produits versés dans les cuves.

5.3.2. Barrière automatique

Pour assurer la sécurité, contrôler la circulation des véhicules et des personnes dans l'usine, nous avons pensé qu'il convenait d'installer une barrière automatique. J'ai contacté différents fabricants pour demander leurs offres de prix et leurs conseils sur l'installation nécessaire. Nous espérons disposer de cet équipement dans un futur proche.

6. Conclusion

Je perçois mon stage à ANTESITE S.A, comme une riche expérience où j'ai pu exercer des tâches techniques, et essayer de résoudre de la manière la plus efficace possible, les problématiques et imprévus inhérents au quotidien d'une usine. Cependant, le principal objectif de ce projet fut une étude énergétique et de processus.

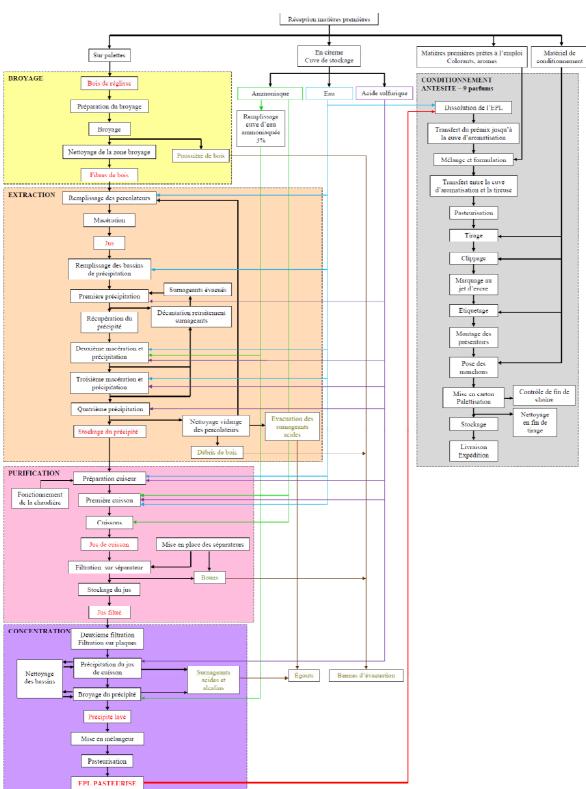
Les principaux buts ont été:

- Etude de la distribution énergétique de différentes sources et processus dans l'entreprise.
- Etudier l'intérêt de la biomasse issue du bois de réglisse comme source énergétique.
- Possibilité d'un grand gain économique si nous privilégions l'utilisation du gaz, par rapport au fuel domestique.
- Calculs pour faire le premier dimensionnement des appareils et outillage pour la mise en route d'un futur processus (EPN).

Conclusion en anglais

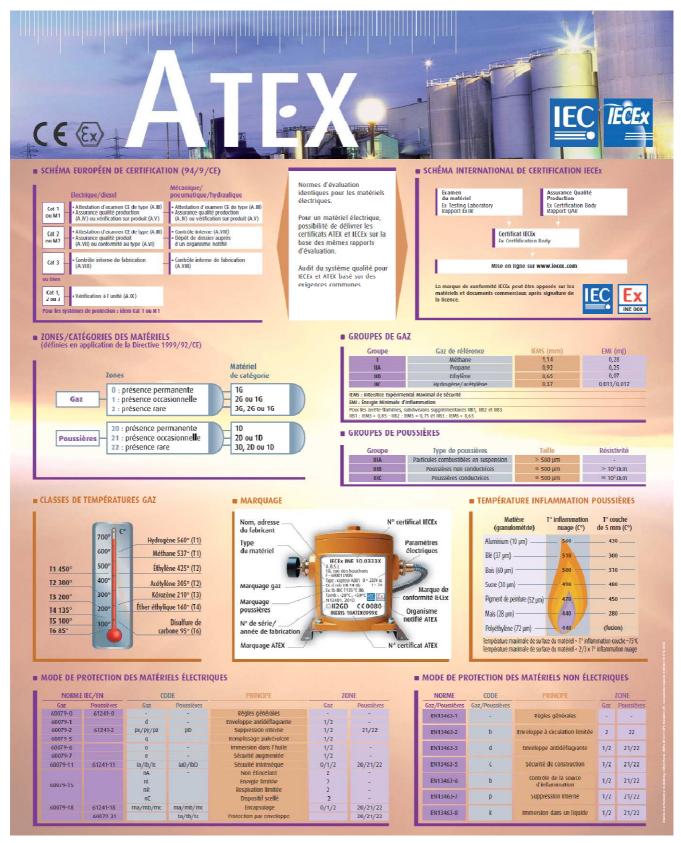
I would define my internship in ANTESITE S.A. as an experience where I developed a technical role, and I have tried to solve as the most efficient way as possible, all the problems and inconveniences that take place at a daily bases in any enterprise. But without forgetting the main target of the project, which was to make a study over the energetic sources and different process in the factory.

The main targets have been:

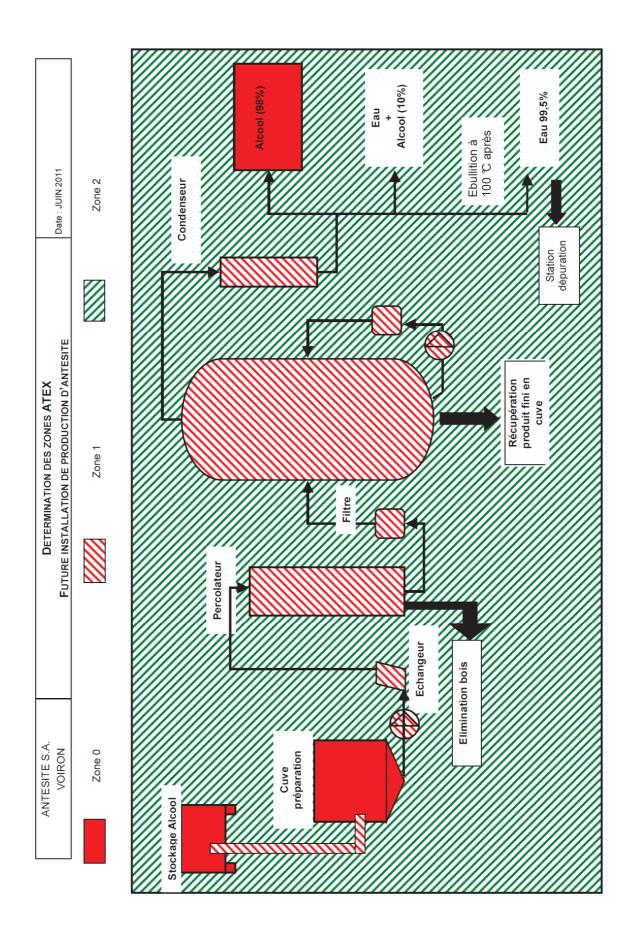

- The study of energy distribution of different supplies and process in the factory.
- Finding out the best way to take advantage of the biomass as an energy source.
- The possibility of an important economic saving if we prefer the use of gas from the use of domestic fuel.
- Calculus for starting to make the firsts designs for the equipments in order to put in service the future process (EPN)

7. Annexes

7.1. Schéma processus EPL



STAGE ENERGIE ET PROCESSUS


7.2. Réglementation ATEX

Source de www.ineris.fr

7.3. Détermination des zones ATEX

7.4. Cahier de travail EPN

Possible distribution de temps et ressources pour le processus EPN

Heure	processus	Temps
07h00 → 08h00	Broyage	1h
08h00 → 09h30	1r macération percolateur 1	1h30
09h30 → 09h40	Vidage percolateur 1	10min
09h40 → 10h40	1r évaporation	1h
09h40 → 9h50	Remplissage percolateur 1	10min
09h40 → 10h40	2 ^e macération percolateur 1	1h
10h40 → 10h50	Vidage percolateur 1	10min
10h50 → 11h50	2 ^e évaporation	1h
10h50 → 11h00	Remplissage percolateur 1	10min
10h50 → 11h50	3 ^e macération percolateur 1	1h
11h50 → 12h00	Vidage percolateur 1	10min
12h00 → 13h00	3 ^e évaporation	1h
12h00 → 12h10	Remplissage percolateur 1	10min
12h00 → 13h00	4 ^e macération percolateur 1	1h
13h00 → 13h10	Vidage percolateur 1	10min
13h10 → 14h10	4 ^e évaporation	1h
13h10 → 13h20	Remplissage percolateur 2	10min
13h10 → 14h10	1 ^e macération percolateur 2	1h
14h10 → 14h20	Vidage percolateur 2	10min
14h20 → 15h20	1 ^e évaporation	1h
14h20 → 14h30	Remplissage percolateur 2	10min
14h20 → 15h20	2 ^e macération percolateur 2	1h
15h20 → 15h30	Vidage percolateur 2	10min
15h30 → 16h30	2 ^e évaporation	1h
15h30 → 15h40	Remplissage percolateur 2	10min
15h30 → 16h30	3 ^e macération percolateur 2	1h
16h30 → 16h40	Vidage percolateur 2	10min
16h40 → 17h50	3 ^e évaporation	1h
16h40 → 16h50	Remplissage percolateur 2	10min
16h40 → 17h40	4 ^e macération percolateur 2	1h
17h40 → 17h50	Vidage percolateur 2	10min
J+1 8h00 → 9h30	4 ^e évaporation	1h

7.5. Calculs

7.5.1. Calculs Processus EPL

Propriétés eau

$$C_{p \text{ eau liq}} = 4,18 \text{ kJ/kgK}$$

$$h_{q \text{ vap}} = 2150 \text{ kJ/kg} (P=2,5atm \text{ et } T=136 \text{°C})$$

$$\eta_{chaudi\`{e}re} = 0.8$$
 (estimation)

$$\eta_{\text{cuiseur}} = 0.8$$
 (estimation)

$$PCI_{fuel} = 35MJ/L = 9,76kWh/L$$

Cuiseur

On suppose nous chauffons une quantité de 2000L et un écart de températures totale de 240° (90° + $5x30^{\circ}$), pendant 5 heures.

$$Q_{\text{eau}} = m \cdot (C_{\text{p eau liq}} \cdot \Delta T)$$

$$Q_{eau} = 2000 \cdot (4,18 \cdot 240) = 2006,4MJ$$

$$Q_{\text{chaudiere}} = \frac{Q_{\text{eau}}}{\eta_{\text{chaudière}} \cdot \eta_{\text{cuiseur}}} \rightarrow L_{\text{fuel}} = \frac{Q_{\text{chaudiere}}}{PCI_{\text{fuel}}}$$

$$Q_{\text{chaudiere}} = \frac{2006,4MJ}{0.8 \cdot 0.8} = 3135MJ \rightarrow L_{\text{fuel}} = \frac{3135MJ}{35MJ/L} = 89,6L$$

$$P_{\text{chaudiere}} = \frac{Q_{\text{chaudiere}}}{heures \cdot \sec/heure}$$

$$P_{\text{chaudiere}} = \frac{3135MJ}{5.3600} = 174,2kW$$

Basins purification

$$Q_{eau} = m \cdot \left(C_{p_eau_liq} \cdot \Delta T\right)$$

$$Q_{\text{eau}} = 2000 \cdot (4,18 \cdot 50) = 418000 kJ$$

$$Q_{\text{chaudiere}} = \frac{Q_{\text{eau}}}{\eta_{\text{chaudière}} \cdot \eta_{\text{cuiseur}}} \rightarrow L_{\text{fuel}} = \frac{Q_{\text{chaudiere}}}{PCI_{\text{fuel}}}$$

Qchaudiere =
$$\frac{418000kJ}{0.8}$$
 = $522500kJ \rightarrow L_{fuel} = \frac{522.5MJ}{35MJ/L} = 14.9L$

$$P_{\text{chaudiere}} = \frac{Q_{\text{chaudiere}}}{\text{sec}/\text{heure}}$$

$$P_{\text{chaudiere}} = \frac{522500kJ}{3600} = 145,1kW$$

Totale processus EPL

$$Q_{chaudiere} = Q_{cuiseur} + Q_{basin} \rightarrow L_{fuel} = \frac{Q_{chaudiere}}{PCI_{fuel}}$$

$$Q_{chaudiere} = 3135000 + 522500 = 3657,5MJ \rightarrow L_{fuel} = \frac{3657,5MJ}{35MJ/L} = 104,5L$$

Si 100 jours par année \rightarrow 10450 L/an

	Energie	Puissance chaudière	L fuel
Cuiseur	2006,4 MJ	174,2 kW	89,6 L
Basins purification	418 MJ	145,1 kW	14,9 L
Totale	2424,4 MJ	319,3 kW	104,5 L

7.5.2. Calculs Processus EPN

Propriétés eau

 $C_{p \text{ eau liq}} = 4,18 \text{ kJ/kgK}$

 $C_{latent \, vap \, eau} = 2253 \, kJ/kg$

 $h_{g \text{ vap}} = 2150 \text{ kJ/kg} (P=2,5atm \text{ et T}=136^{\circ}\text{C})$

Propriétés alcool

 $C_{p \text{ alc liq}} = 2,46 \text{ kJ/kgK}$

T_{ebullition} = 78℃

 $C_{latent \, vap \, alc} = 854 \, kJ/kg$

Densité alcool, $\rho_{alc} = 0.8 \text{ kg/L}$

 $PCI_{fuel} = 35MJ/L = 9,76kWh/L$

 $\eta_{\text{chaudière}} = 0.8$ (estimation)

Echangeur

$$E_{i} = (C_{p \ eau \ lia} + C_{p \ alc \ lia} \cdot \rho_{alc}) \cdot \Delta T \cdot Vol$$

$$P_i = \frac{E_i}{temps}$$

1r percolation;

$$1400L \rightarrow E_1 = (4,18 + 2,46.0,8) \cdot 40.700 = 172144 \text{ kJ}$$

Puissance échangeur

Si on échange en 10 min \rightarrow débit = 2,334 L/s = 8,4 m³/h

$$P_1 = \frac{172144}{600} = 286,9kW$$

2^e, 3^e, 4^e percolations;

$$700L \rightarrow E_2 = (4.18 + 2.46.0.8) \cdot 30.350 = 86072 \text{ kJ}$$

Puissance échangeur

Si on échange en 10 min \rightarrow débit = 1,167 L/s = 4,2 m³/h

$$P_2 = \frac{86072}{600} = 143,45kW$$

Totale échangeur

$$E_t = E_1 + E_2 + E_3 + E_4$$

$$E_t = 172144 + 86072 \cdot 3 = 430360 \text{ KJ}$$

Supposant un rendement du échangeur du $80\% \rightarrow \eta_{\text{\'echangeur}} = 0.8$

$$E_{\textit{chaudiere}} = \frac{E_{\textit{t}}}{\eta_{\textit{chaudiére}} \cdot \eta_{\textit{évaporateur}}}$$

$$E_{chaudiere} = \frac{430,360}{0.8 \cdot 0.8} = 672,4375MJ$$

Fuel pour une journée
$$\rightarrow fuel = \frac{E_t}{PCI_{fuel} \cdot \eta_{\text{chaudiére}} \cdot \eta_{\text{échangeur}}}$$

$$fuel = \frac{430,360}{35 \cdot 0.8 \cdot 0.8} = 19,2L$$

Evaporateur

Si on évapore 700L en 1h (P = 1bar);

$$Q_{eau} = \frac{m \cdot \left(C_{p_eau_liq} \cdot \Delta T + C_{lat_vap_eau}\right)}{3600 \sec ons}$$

$$Q_{\text{eau}} = \frac{350 \cdot (4,18 \cdot 50 + 2253)}{3600} = 239,36kW$$

$$Q_{alcool} = \frac{vol \cdot \rho_{alc} \cdot (C_{p_alc_liq} \cdot \Delta T + C_{lat_vap_alc})}{3600 \, sec}$$

$$Q_{\text{alcool}} = \frac{350 \cdot 0.8 \cdot (2.46 \cdot 28 + 854)}{3600} = 71.78kW$$

$$Q_{tot} = Q_{eau} + Q_{alcool}$$

$$Q_{tot} = 239,36 + 71,78 = 311,14 \text{ kW}$$
 (idéal)

$$D\acute{e}bit_vapeur = \frac{Q_{tot} \cdot 3600 \sec}{h_{g_vap} \cdot \eta_{chaudi\`{e}re}}$$

$$D\acute{e}bit_vapeur = \frac{311,14 \cdot 3600}{2150 \cdot 0.8} = 651,2kg/h$$

Besoins énergétiques de vapeur d'une journée de travail (1percolateur) ;

$$E_{jour} = 4_{percolations} \cdot Q_{tot} \cdot 3600 \operatorname{sec}$$

$$E_{iour} = 4 \cdot 311,14 \cdot 3600 = 4480,4MJ$$

Supposant un rendement du évaporateur du $80\% \to \eta_{\text{\'evaporateur}} = 0.8$

$$E_{\textit{jour_chaudiere}} = \frac{4_{\textit{percolations}} \cdot Q_{\textit{tot}} \cdot 3600 \sec}{\eta_{\textit{chaudiére}}} \cdot \eta_{\textit{évaporateur}}$$

$$E_{jour_chaudiere} = \frac{4 \cdot 311,14 \cdot 3600}{0,8 \cdot 0,8} = 7000MJ$$

$$\text{Coût fuel pour une journée} \rightarrow \frac{E_{jour}}{PCI_{fuel} \cdot \eta_{\text{chaudiére}} \cdot \eta_{\text{\'evaporateur}}}$$

$$Co\hat{u}t_{fuel} = \frac{4480,4}{35 \cdot 0.8 \cdot 0.8} = 200L$$

	Energie	Energie chaudière	Puissance	L fuel
Echangeur	258,216 MJ	403,5 MJ	286,9 / 143,45 kW	11,5 L
Evaporateur	4480,4 MJ	7000 MJ	311,14 kW	200 L
Totale	4738,616 MJ	7403,5 MJ	598,04 / 454,59 kW	211,5 L

7.5.3. Calcul dimensionnement évaporateur

Supposant vapeur a 2,6 bar;

 $h_2 = 50000 \text{ W/m}^2 \text{K (vapeur)}$

 $h_1 = 10000 \text{ W/m}^2 \text{K (eau)}$

 $T_{\text{vap}} = 140$ °C

T_{eau} = 100℃

 $\lambda = 16 \text{ W/mK (acier inox)}$

Épaisseur = 2 mm

Puissance thermique à échanger ;

Cylindre

$$\phi_{cyl} = \frac{2 \cdot \pi \cdot (T_{vap} - T_{eau})}{\frac{1}{h_1 \cdot r_1} + \frac{1}{\lambda} \cdot \ln \frac{r_2}{r_1} + \frac{1}{h_2 \cdot r_2}}$$

Demi-sphère

$$\phi_{sph} = \frac{2 \cdot \pi \cdot (T_{vap} - T_{eau})}{\frac{1}{h_1 \cdot r_1^2} + \frac{(r_2 - r_1)}{\lambda \cdot r_1 \cdot r_2} + \frac{1}{h_2 \cdot r_2^2}}$$

Si $\emptyset = 1 \text{ m}$

 $r_1 = 0, 5 \text{ m}$

 $r_2 = 0,502 \text{ m}$

L = 0.94 m

$$\phi_{cyl} = \frac{2 \cdot \pi \cdot (140 - 100)}{\frac{1}{10000 \cdot 0,5} + \frac{1}{16} \cdot \ln \frac{0,502}{0,5} + \frac{1}{50000 \cdot 0,502}} \cdot 0,94 = 482787W$$

$$\phi_{sph} = \frac{2 \cdot \pi \cdot (140 - 100)}{\frac{1}{10000 \cdot 0.5^{2}} + \frac{(0.502 - 0.5)}{16 \cdot 0.502 \cdot 0.5} + \frac{1}{50000 \cdot 0.502^{2}}} = 257146W$$

$$\phi_{totale} = \phi_{cyl} + \phi_{sph}$$

$$\phi_{totale} = 482787 + 257146 = 739933W$$

Si
$$\emptyset$$
 = 0,8 m

$$r_1 = 0.4 \text{ m}$$

$$r_2 = 0,402 \text{ m}$$

$$L = 1,72 \text{ m}$$

$$\phi_{cyl} = \frac{2 \cdot \pi \cdot (140 - 100)}{\frac{1}{10000 \cdot 0,4} + \frac{1}{16} \cdot \ln \frac{0,402}{0,4} + \frac{1}{50000 \cdot 0,402}} \cdot 1,72 = 706954W$$

$$\phi_{sph} = \frac{2 \cdot \pi \cdot (140 - 100)}{\frac{1}{10000 \cdot 0,4^{2}} + \frac{(0,402 - 0,4)}{16 \cdot 0,402 \cdot 0,4} + \frac{1}{50000 \cdot 0,402^{2}}} = 164684W$$

$$\phi_{totale} = \phi_{cyl} + \phi_{sph}$$

$$\phi_{totale} = 706954 + 164684 = 871638W$$

Si Ø = 1,2 m

$$r_1 = 0.6 \text{ m}$$

$$r_2 = 0,602 \text{ m}$$

$$L = 0.484 \text{ m}$$

$$\phi_{cyl} = \frac{2 \cdot \pi \cdot (140 - 100)}{\frac{1}{10000 \cdot 0,6} + \frac{1}{16} \cdot \ln \frac{0,602}{0,60} + \frac{1}{50000 \cdot 0,602}} \cdot 0,484 = 298233W$$

$$\phi_{sph} = \frac{2 \cdot \pi \cdot (140 - 100)}{\frac{1}{10000 \cdot 0,602^{2}} + \frac{(0,602 - 0,6)}{16 \cdot 0,602 \cdot 0,6} + \frac{1}{50000 \cdot 0,602^{2}}} = 370125W$$

$$\phi_{totale} = \phi_{cyl} + \phi_{sph}$$

$$\phi_{totale} = 298233 + 370125 = 668358W$$

Diamètre	Φ _{cyl}	Φ_{sph}	$oldsymbol{\Phi}_{ ext{totale}}$
0,8m	706,954 kW	164,684 kW	871,638 kW
1m	482,787 kW	257,146 kW	739,933 kW
1,2m	298,233 kW	370,125 kW	668,358 kW

Comparassions de transfert thermique, si diamètre est 1m, et épaisseurs 2mm, 5mmm et 10mm. La procédure pour formulé ces calculs est le même que suivi antérieurement.

Supposant vapeur a 2,6 bar;

Epaisseur	$oldsymbol{\Phi}_{cyl}$	Φ_{sph}	$oldsymbol{\Phi}_{ ext{totale}}$
2mm	482,787 kW	257,146 kW	739,933 kW
5mm	274,229 kW	146,457 kW	420,686 kW
10mm	159,964 kW	85,839 kW	245,803 kW

Supposant vapeur a 2 bar;

 $h_2 = 45000 \text{ W/m}^2 \text{K (vapeur)}$

 $h_1 = 10000 \text{ W/m}^2 \text{K (eau)}$

 $T_{\text{vap}} = 133\%$

T_{eau} = 100℃

 $\lambda = 16 \text{ W/mK (acier inox)}$

Epaisseur	$oldsymbol{\Phi}_{cyl}$	$oldsymbol{\Phi}_{\sf sph}$	$oldsymbol{\Phi}_{ ext{totale}}$
2mm	394,728 kW	210,249 kW	604,977 kW
5mm	225,089 kW	120,217 kW	345,305 kW
10mm	131,582 kW	70,612 kW	202,194 kW

Supposant vapeur a 1 bar;

 $h_2 = 40000 \text{ W/m}^2 \text{K (vapeur)}$

 $h_1 = 10000 \text{ W/m}^2 \text{K (eau)}$

 $T_{\text{vap}} = 120 ^{\circ}\text{C}$

 $T_{\text{eau}} = 100$ $^{\circ}$

 $\lambda = 16 \text{ W/mK (acier inox)}$

Epaisseur	$oldsymbol{\Phi}_{cyl}$	$oldsymbol{\Phi}_{sph}$	$oldsymbol{\Phi}_{ ext{totale}}$
2mm	236,578 kW	126,015 kW	362,593 kW
5mm	135,556 kW	72,401 kW	207,957 kW
10mm	79,455 kW	42,640 kW	122,094 kW

7.5.4. Calcul dimensionnement condenseur

Propriétés eau

 $C_{p \text{ eau liq}} = 4,18 \text{ kJ/kgK}$

 $C_{latent cond eau} = 2253 \text{ kJ/kg}$

 $h_{g \text{ vap}} = 2150 \text{ kJ/kg} (P=2.5 \text{atm et T} = 136 ^{\circ}\text{C})$

Propriétés alcool

 $C_{p \text{ alc liq}} = 2,46 \text{ kJ/kgK}$

T_{ebullition} = 78℃

 $C_{latent cond alc} = 854 \text{ kJ/kg}$

Densité alcool, $\rho_{alc} = 0.8 \text{ kg/L}$

 $\eta_{\text{chaudière}} = 0.8$ (estimation)

Nous supposons un ΔT=22 pour l'eau a condenser

$$E = (C_{p equ}|_{lia} \cdot \Delta T + C_{latent cond equ} + C_{latent cond alc} \cdot \rho_{alc}) \cdot Vol$$

$$E = (4.18 \cdot 22 + 2253 + 854 \cdot 0.8) \cdot 350 = 1059856kJ$$

Le temps pour refroidir est environ 1h

$$P = \frac{E}{temps}$$

$$P = \frac{1059856}{3600} = 294,04kW$$

La variation de température de l'eau de refroidissement nous supposons ∆T=35℃

$$E = (C_{p_{-eau_liq}} \cdot \Delta T) \cdot Vol \rightarrow Vol = \frac{E}{\Delta T \cdot C_{p_{-eau_liq}}}$$

$$Vol = \frac{1059856}{35.418} = 7244,4m^3 \rightarrow Debit = 7,244m^3/h$$

	Energie	Puissance	Débit
Condenseur	1059,856 MJ	294,04 kW	7,244 m ³ /h

 $\phi = \frac{2 \cdot \pi \cdot (T_{vap} - T_{env})}{\frac{1}{h_{v} \cdot r_{v}} + \frac{1}{\lambda_{v}} \cdot \ln \frac{r_{2}}{r_{v}} + \frac{1}{h_{0} \cdot r_{2}}}$

7.5.5. Calcul pertes chaleur du circuit vapeur Circuit vapeur

On suppose;

$$h_1 = 50000 \text{ W/m}^2 \text{K (vapeur)}$$

$$h_2 = 18 \text{ W/m}^2 \text{K (air)}$$

$$T_{env} = 10$$
°C

 $\lambda_{acier} = 26 \text{ W/mK (acier)}$

$$r_1 = 0.019 \text{ m}$$

$$r_2 = 0.021 \text{ m}$$

$$\phi = \frac{2 \cdot \pi \cdot (140 - 10)}{\frac{1}{50000 \cdot 0.019} + \frac{1}{26} \cdot \ln \frac{0.021}{0.019} + \frac{1}{18 \cdot 0.021}} = 308,18 \frac{w}{m}$$

Si on a environ 50.51 m de tuyaux chauds de \emptyset = 42mm;

$$q = \phi \cdot dist$$

$$q = 308,18 \cdot 50,51 = 15,57kW$$

$$r_1 = 0.015 \text{ m}$$

$$r_2 = 0.017 \text{ m}$$

$$\phi = \frac{2 \cdot \pi \cdot (140 - 10)}{\frac{1}{50000 \cdot 0.015} + \frac{1}{26} \cdot \ln \frac{0.017}{0.015} + \frac{1}{18 \cdot 0.017}} = 249,48 \frac{w}{m}$$

Si on a environ 26.25 m de tuyaux chauds de \emptyset = 34mm;

$$q = \phi \cdot dist$$

$$q = 249,48 \cdot 26,25 = 6,55kW$$

$$r_1 = 0.012 \text{ m}$$

$$r_2 = 0.0135 \text{ m}$$

$$\phi = \frac{2 \cdot \pi \cdot (140 - 10)}{\frac{1}{50000 \cdot 0.012} + \frac{1}{26} \cdot \ln \frac{0.0135}{0.012} + \frac{1}{18 \cdot 0.0135}} = 198,19 \frac{w}{m}$$

Si on a environ 23.60 m de tuyaux chauds de \emptyset = 27mm;

$$q = \phi \cdot dist$$

$$q = 198,19 \cdot 23,60 = 4,68kW$$

Les pertes totales de chaleur sont;

$$q_{totale} = \Sigma q_i$$

$$q_{totale} = 15,57 + 6,55 + 4,68 = 26,80kW$$

Et la duré est de 8h par jour de fonctionnement ;

$$E = q_{totale} \cdot heures$$

$$E = 26.8.8 = 214.4kWh$$

La performance de la chaudière on suppose que est environ 80%;

$$E_{finale} = E/\eta$$

$$E_{finale} = 214,4/0,8 = 268kWh par jour$$

PCI gazole =
$$9.76 \text{ kWh/L} \rightarrow 268/9.76 = 27.46 \text{ L}$$

Le prix du gazole est 0,74€/L

Si nous utiliseons matériaux isolante;

Epaisseur d'isolation = 20mm

$$\lambda_{isol} = 0.04 \text{ W/mK}$$

$$\phi = \frac{2 \cdot \pi \cdot \left(T_{vap} - T_{env}\right)}{\frac{1}{h_1 \cdot r_1} + \frac{1}{\lambda_{acier}} \cdot \ln \frac{r_2}{r_1} + \frac{1}{\lambda_{isol}} \cdot \ln \frac{r_3}{r_2} + \frac{1}{h_2 \cdot r_3}}$$

• Si Ø = 42mm

$$\phi = \frac{2 \cdot \pi \cdot (140 - 10)}{\frac{1}{50000 \cdot 0.019} + \frac{1}{26} \cdot \ln \frac{0.021}{0.019} + \frac{1}{0.04} \cdot \ln \frac{0.041}{0.021} + \frac{1}{18 \cdot 0.041}} = 45,16 \frac{w}{m}$$

• Si Ø = 34mm

$$\phi = \frac{2 \cdot \pi \cdot (140 - 10)}{\frac{1}{50000 \cdot 0.015} + \frac{1}{26} \cdot \ln \frac{0.017}{0.015} + \frac{1}{0.04} \cdot \ln \frac{0.037}{0.017} + \frac{1}{18 \cdot 0.037}} = 38,99 \frac{w}{m}$$

• Si Ø = 27mm

$$\phi = \frac{2 \cdot \pi \cdot (140 - 10)}{\frac{1}{50000 \cdot 0.012} + \frac{1}{26} \cdot \ln \frac{0.0135}{0.012} + \frac{1}{0.04} \cdot \ln \frac{0.0335}{0.0135} + \frac{1}{18 \cdot 0.0335}} = 33,50 \frac{w}{m}$$

 $q_{totale} = \Sigma q_i \cdot d_i$

$$q_{totale} = 45,16.50,51 + 38,99.26,25 + 33,50.23,6 = 4,01 \text{ kW}$$

 $E = q_{totale} \cdot heures$

$$E = 4,01.8 = 32,8kWh$$

$$E_{finale} = E/\eta$$

$$E_{finale} = 32,8/0,8 = 41kWh par jour$$

PCI gazole =
$$9.76 \text{ kWh/L} \rightarrow 41/9.76 = 4.2 \text{ L}$$

Le prix du gazole est 0,74€/L

Economisassions énergétique de pertes circuit vapeur;

$$\frac{26,8-4,01}{26,8} \cdot 100 = 85\%$$

Circuit froid

On suppose;

$$h_1 = 1000 \text{ W/m}^2 \text{K (eau)}$$

$$h_2 = 18 \text{ W/m}^2 \text{K (aire)}$$

$$T_{env} = 10$$
°C

 $\lambda = 26 \text{ W/mK (acier)}$

$$\phi = \frac{2 \cdot \pi \cdot (T_{vap} - T_{env})}{\frac{1}{h_1 \cdot r_1} + \frac{1}{\lambda} \cdot \ln \frac{r_2}{r_1} + \frac{1}{h_2 \cdot r_2}}$$

$$r_1 = 0.015 \text{ m}$$

$$r_2 = 0.017 \text{ m}$$

$$\phi = \frac{2 \cdot \pi \cdot (90 - 10)}{\frac{1}{1000 \cdot 0.015} + \frac{1}{26} \cdot \ln \frac{0.017}{0.015} + \frac{1}{18 \cdot 0.017}} = 150,52 \frac{w}{m}$$

Si on a environ 47.65 m de tuyaux de \emptyset = 34mm;

$$q = \phi \cdot dist$$

$$q = 150,52 \cdot 47,65 = 7,17kW$$

Les pertes totales de chaleur sont;

$$q_{totale} = \Sigma q$$

$$q_{totale} = 7,17kW$$

Et la duré est de 8h par jour de fonctionnement ;

$$E = q_{totale} \cdot heures$$

$$E = 7,17.8 = 57,38kWh$$

La performance de la chaudière on suppose que est environ 80%;

$$E_{\text{finale}} = E/\eta$$

$$E_{\text{finale}} = 57,38/0,8 = 71,72$$
kWh par jour

PCI gazole =
$$9.76 \text{ kWh/L} \rightarrow 71,72/9.76 = 7,35 \text{ L}$$

Le prix du gazole est 0,74€/L

Si on utilise matériaux isolante;

Epaisseur d'isolation = 20mm

 $\lambda_{isol} = 0.04 \text{ W/mK}$

$$\phi = \frac{2 \cdot \pi \cdot (T_{eau} - T_{env})}{\frac{1}{h_1 \cdot r_1} + \frac{1}{\lambda_{acier}} \cdot \ln \frac{r_2}{r_1} + \frac{1}{\lambda_{isol}} \cdot \ln \frac{r_3}{r_2} + \frac{1}{h_2 \cdot r_3}}$$

• Si Ø = 34mm

$$\phi = \frac{2 \cdot \pi \cdot (90 - 10)}{\frac{1}{1000 \cdot 0.015} + \frac{1}{26} \cdot \ln \frac{0.017}{0.015} + \frac{1}{0.04} \cdot \ln \frac{0.037}{0.017} + \frac{1}{18 \cdot 0.037}} = 22,06 \frac{w}{m}$$

$$q = \phi \cdot dist$$

$$q = 22,06 \cdot 47,65 = 1,05kW$$

Et la duré est de 8h par jour de fonctionnement ;

 $E = q_{totale} \cdot heures$

E = 1,05.8 = 8,40kWh

La performance de la chaudière on suppose que est environ 80%;

$$E_{finale} = E/\eta$$

$$E_{finale} = 8,4/0,8 = 10,50$$
kWh par jour

PCI gazole = $9.76 \text{ kWh/L} \rightarrow 10,50/9.76 = 1,08 \text{ L}$

Le prix du gazole est 0,74€/L

Economisassions énergétique de pertes au circuit condensats;

$$\frac{7,17-1,05}{7,17} \cdot 100 = 85,4\%$$

Bilan total;

Sans isolant
$$\rightarrow$$
 E_{tot} = 214,40 + 57,38 = 271,78kW·h
 \rightarrow Coût = 20,32 + 5,44 = 25,76€

Avec isolant
$$\rightarrow$$
 E_{tot} = 32,8 + 8,40 = 41,2kW·h
 \rightarrow Coût = 3,1 + 0,8 = 3,9€

Economisassions

$$\frac{271,78 - 41,2}{271,78} \cdot 100 = 84,8\%$$

Production vapeur chaudière

$$P = 2.6 \text{ bar } \rightarrow T = 140 \text{ } \text{C}$$

$$h_g = 2733,9 \text{ kJ/kg}$$

E = Débit·h_q

$$E = 300.2733,9 = 820170 \text{ kJ/h} \rightarrow 1822 \text{kW} \cdot \text{h}$$

Sans isolant
$$\rightarrow \left(1 - \frac{1822 - 271,78}{1822}\right) \cdot 100 = 15\%$$

Avec isolant
$$\rightarrow \left(1 - \frac{1822 - 41,2}{1822}\right) \cdot 100 = 2,26\%$$

	Pertes	L gazole	€	% Energie totale
Sans isolant	271,78kW·h	34,81 L	25,76	15
Avec isolant	41,2kW·h	5,28 L	3,9	2,26

Epargne par jour 25,76 – 3,9 = 21,86€

Il faut trouver la température de surface des tuyaux, pour savoir l'isolant adéquate.

Coût installation isolats = 300€ amortissement 13 ou 15 jours de fonctionnement.

7.6. Tables thermodynamiques

Source Spirax Sarco

Source	Source Spirax Sarco										
Absolu pression	Point d'ébullition	Volume spécifique (vapeur)	Densité (à vapeur)		cifique de l'eau eur sensible)	de la v	spécifique /apeur ur totale)		latente de isation	La chaleur spécifique	
(Bar)	⁽⁰ C)	(M ³ / kg)	(Kg / m ³⁾	(KJ / kg)	(Kcal / kg)	(KJ / kg)	(Kcal / kg)	(KJ / kg)	(Kcal / kg)	(KJ / kg)	
0.02	17.51	67.006	0.015	73.45	17.54	2533.64	605.15	2460.19	587.61	1.8644	
0.03	24.10	45.667	0.022	101.00	24.12	2545.64	608.02	2444.65	583.89	1.8694	
0.04	28.98	34.802	0.029	121.41	29.00	2554.51	610.13	2433.10	581.14	1.8736	
0.05	32.90	28.194	0.035	137.77	32.91	2561.59	611.83	2423.82	578.92	1.8774	
0.06	36.18	23.741	0.042	151.50	36.19	2567.51	613.24	2416.01	577.05	1.8808	
0.07	39.02	20.531	0.049	163.38	39.02	2572.62	614.46	2409.24	575.44	1.8840	
0.08	41.53	18.105	0.055	173.87	41.53	2577.11	615.53	2403.25	574.01	1.8871	
0.09	43.79	16.204	0.062	183.28	43.78	2581.14	616.49	2397.85	572.72	1.8899	
0.1	45.83	14.675	0.068	191.84	45.82	2584.78	617.36	2392.94	571.54	1.8927	
0.2	60.09	7.650	0.131	251.46	60.06	2609.86	623.35	2358.40	563.30	1.9156	
0.3	69.13	5.229	0.191	289.31	69.10	2625.43	627.07	2336.13	557.97	1.9343	
0.4	75.89	3.993	0.250	317.65	75.87	2636.88	629.81	2319.23	553.94	1.9506	
0.5	81.35	3.240	0.309	340.57	81.34	2645.99	631.98	2305.42	550.64	1.9654	
0.6	85.95	2.732	0.366	359.93	85.97	2653.57	633.79	2293.64	547.83	1.9790	
0.7	89.96	2.365	0.423	376.77	89.99	2660.07	635.35	2283.30	545.36	1.9919	
0.8	93.51	2.087	0.479	391.73	93.56	2665.77	636.71	2274.05	543.15	2.0040	
0.9	96.71	1.869	0.535	405.21	96.78	2670.85	637.92	2265.65	541.14	2.0156	
1	99.63	1.694	0.590	417.51	99.72	2675.43	639.02	2257.92	539.30	2.0267	
1.1	102.32	1.549	0.645	428.84	102.43	2679.61	640.01	2250.76	537.59	2.0373	
1.2	104.81	1.428	0.700	439.36	104.94	2683.44	640.93	2244.08	535.99	2.0476	
1.3	107.13	1.325	0.755	449.19	107.29	2686.98	641.77	2237.79	534.49	2.0576	

Filière ME STAGE ENERGIE ET PROCESSUS

1.4 109.32 1.236 0.809 458.42 109.49 2690.26 6-25.66 2231.66 533.07 2.0673 1.5 111.37 1.169 0.863 467.13 111.57 2693.36 643.30 2226.23 531.73 2.0768 1.5 111.37 1.159 0.863 467.13 111.57 2893.36 643.30 2228.23 531.73 2.0768 1.6 113.32 1.081 0.916 475.38 113.54 2898.97 644.84 2215.75 529.22 2.0860 1.7 115.17 1.031 0.970 483.22 115.42 2898.97 644.84 2215.75 529.22 2.0860 1.8 118.93 0.977 1.023 490.70 117.20 2701.54 645.25 2210.84 528.05 2.1037 1.9 118.62 0.920 1.076 497.85 118.91 2703.96 645.83 2201.59 528.84 2.1298 2.2 120.23 0.886											
1.5 111.37 1.159 0.863 467.13 111.57 2693.36 643.30 2226.23 531.73 2.0768 1.6 113.32 1.091 0.916 475.38 113.54 2696.25 643.99 2220.87 530.45 2.0860 1.7 115.17 1.031 0.970 483.22 115.42 2696.97 644.64 2215.75 529.22 2.0950 1.8 116.93 0.977 1.023 490.70 117.20 2701.54 645.25 2210.84 528.05 2.1037 1.9 118.62 0.920 1.076 497.85 118.91 2703.38 646.39 2201.59 525.84 2.1208 2.2 123.27 0.810 1.235 517.63 123.83 2710.00 647.42 2192.98 523.78 2.1372 2.4 126.09 0.746 1.340 529.64 126.50 2714.55 648.36 2184.91 521.86 2.1531 2.6 128.73 0.893	1.4	109.32	1.236	0.809	458.42	109.49	2690.28	642.56	2231.86	533.07	2.0673
1.6 113.32 1.091 0.916 475.38 113.54 2696.25 643.99 2220.87 530.45 2.0860 1.7 115.17 1.031 0.970 483.22 115.42 2696.97 644.64 2215.75 529.22 2.0950 1.8 116.93 0.977 1.023 490.70 117.20 2701.54 645.25 2210.84 528.05 2.1037 1.9 118.62 0.929 1.076 497.85 118.91 2703.98 645.83 2206.13 526.92 2.1124 2 120.23 0.885 1.129 504.71 120.55 2706.29 646.39 2201.59 525.84 2.1208 2.2 123.27 0.810 1.236 517.63 123.63 2710.60 647.42 2192.99 523.78 2.1372 2.4 126.09 0.746 1.340 529.64 126.50 2714.55 648.36 218.91 521.86 2.1531 2.5 128.73 0.593 <t< th=""><th>1.5</th><th>111.37</th><th>1.159</th><th>0.863</th><th>467.13</th><th>111.57</th><th>2693.36</th><th>643.30</th><th>2226.23</th><th>531.73</th><th>2.0768</th></t<>	1.5	111.37	1.159	0.863	467.13	111.57	2693.36	643.30	2226.23	531.73	2.0768
1.7 115.17 1.031 0.970 483.22 115.42 2698.97 644.64 2215.75 529.22 2.0950 1.8 116.83 0.977 1.023 490.70 117.20 2701.54 645.25 2210.84 528.05 2.1037 1.9 118.62 0.929 1.076 497.85 118.91 2703.98 645.83 2206.13 526.92 2.1124 2 120.23 0.885 1.129 504.71 120.55 2706.29 646.39 2201.59 525.84 2.1372 2.4 126.09 0.746 1.340 529.84 126.50 2714.55 648.36 218.91 521.86 2.1531 2.6 128.73 0.693 1.444 540.88 129.19 2718.17 649.22 2177.30 520.04 2.1685 2.8 131.20 0.646 1.548 551.45 131.71 2721.54 650.03 2170.06 518.32 2.1895 3.5 138.87 0.524 <t< th=""><th>1.5</th><th>111.37</th><th>1.159</th><th>0.863</th><th>467.13</th><th>111.57</th><th>2693.36</th><th>643.30</th><th>2226.23</th><th>531.73</th><th>2.0768</th></t<>	1.5	111.37	1.159	0.863	467.13	111.57	2693.36	643.30	2226.23	531.73	2.0768
1.8 116.93 0.977 1.023 490.70 117.20 2701.54 645.25 2210.84 528.05 2.1037 1.9 118.62 0.929 1.076 497.85 118.91 2703.98 645.83 2206.13 526.92 2.1124 2 120.23 0.885 1.129 504.71 120.55 2706.29 646.39 2201.59 525.84 2.1208 2.2 123.27 0.810 1.235 517.63 123.63 2710.60 647.42 2192.98 523.78 2.1372 2.4 126.09 0.746 1.340 529.64 126.50 2714.56 648.36 2184.91 521.86 2.1531 2.6 128.73 0.693 1.444 540.88 129.19 2718.17 649.22 2177.30 520.04 2.1685 2.8 131.20 0.646 1.548 551.45 131.71 2721.54 650.03 2170.08 518.32 2.1835 3 133.54 0.606 <td< th=""><th>1.6</th><th>113.32</th><th>1.091</th><th>0.916</th><th>475.38</th><th>113.54</th><th>2696.25</th><th>643.99</th><th>2220.87</th><th>530.45</th><th>2.0860</th></td<>	1.6	113.32	1.091	0.916	475.38	113.54	2696.25	643.99	2220.87	530.45	2.0860
1.9 118.62 0.929 1.076 497.85 118.91 2703.98 645.83 2206.13 526.92 2.1124 2 120.23 0.885 1.129 504.71 120.55 2706.29 646.39 2201.59 525.84 2.1208 2.2 123.27 0.810 1.235 517.63 123.63 2710.60 647.42 2192.98 523.78 2.1372 2.4 126.09 0.746 1.340 529.64 126.50 2714.55 648.36 2184.91 521.86 2.1531 2.6 128.73 0.693 1.444 540.88 129.19 2718.17 649.22 2177.30 520.04 2.1685 2.8 131.20 0.646 1.548 551.45 131.71 2721.54 650.03 2170.08 518.32 2.1835 3 133.54 0.606 1.851 561.44 134.10 2724.66 650.77 2163.22 516.68 2.1981 3.5 138.87 0.524 1.908 584.28 139.55 2731.63 652.44 2147.35 512.89	1.7	115.17	1.031	0.970	483.22	115.42	2698.97	644.64	2215.75	529.22	2.0950
2 120.23 0.885 1.129 504.71 120.55 2706.29 646.39 2201.59 525.84 2.1208 2.2 123.27 0.810 1.235 517.63 123.63 2710.60 647.42 2192.98 523.78 2.1372 2.4 126.09 0.746 1.340 529.64 126.50 2718.55 648.36 2184.91 521.86 2.1531 2.6 128.73 0.693 1.444 540.88 129.19 2718.17 649.22 2177.30 520.04 2.1685 2.8 131.20 0.646 1.548 551.45 131.71 2721.54 650.03 2170.08 518.32 2.1835 3 133.54 0.606 1.651 561.44 134.10 2724.66 650.77 2163.22 516.68 2.1981 3.5 138.87 0.524 1.908 584.28 139.55 2731.63 652.44 2147.35 512.89 2.2331 4 143.63 0.462 2.163 604.68 144.43 273.63 653.87 2132.95 509.45 <td< th=""><th>1.8</th><th>116.93</th><th>0.977</th><th>1.023</th><th>490.70</th><th>117.20</th><th>2701.54</th><th>645.25</th><th>2210.84</th><th>528.05</th><th>2.1037</th></td<>	1.8	116.93	0.977	1.023	490.70	117.20	2701.54	645.25	2210.84	528.05	2.1037
2.2 123.27 0.810 1.235 517.63 123.63 2710.60 647.42 2192.98 523.78 2.1372 2.4 126.09 0.746 1.340 529.64 126.50 2714.55 648.36 2184.91 521.86 2.1531 2.6 128.73 0.693 1.444 540.88 129.19 2718.17 649.22 2177.30 520.04 2.1685 2.8 131.20 0.646 1.548 551.45 131.71 2721.54 650.03 2170.08 518.32 2.1835 3 133.54 0.606 1.651 561.44 134.10 2724.66 650.77 2163.22 516.68 2.1981 3.5 138.87 0.524 1.908 584.28 139.55 2731.63 652.44 2147.35 512.89 2.2331 4 143.63 0.462 2.163 604.68 144.43 2737.63 653.87 2132.95 509.45 2.2864 4.5 147.92 0.414 <td< th=""><th>1.9</th><th>118.62</th><th>0.929</th><th>1.076</th><th>497.85</th><th>118.91</th><th>2703.98</th><th>645.83</th><th>2206.13</th><th>526.92</th><th>2.1124</th></td<>	1.9	118.62	0.929	1.076	497.85	118.91	2703.98	645.83	2206.13	526.92	2.1124
2.4 126.09 0.746 1.340 529.64 126.50 2714.55 648.36 2184.91 521.86 2.1531 2.6 128.73 0.693 1.444 540.88 129.19 2718.17 649.22 2177.30 520.04 2.1685 2.8 131.20 0.646 1.548 551.45 131.71 2721.54 650.03 2170.08 518.32 2.1835 3 133.54 0.606 1.651 561.44 134.10 2724.66 650.07 2163.22 516.88 2.1981 3.5 138.87 0.524 1.908 584.28 139.55 2731.63 652.44 2147.35 512.89 2.2331 4 143.63 0.462 2.163 604.68 144.43 2737.63 653.87 2132.95 509.45 2.2664 4.5 147.92 0.414 2.417 623.17 148.84 2742.88 655.13 2119.71 506.29 2.2983 5 151.85 0.375 2	2	120.23	0.885	1.129	504.71	120.55	2706.29	646.39	2201.59	525.84	2.1208
2.6 128.73 0.693 1.444 540.88 129.19 2718.17 649.22 2177.30 520.04 2.1685 2.8 131.20 0.646 1.548 551.45 131.71 2721.54 650.03 2170.08 518.32 2.1835 3 133.54 0.606 1.651 561.44 134.10 2724.66 650.77 2163.22 516.68 2.1981 3.5 138.87 0.524 1.908 584.28 139.55 2731.63 652.44 2147.35 512.89 2.2331 4 143.63 0.462 2.163 604.68 144.43 2737.63 653.87 2132.95 509.45 2.2664 4.5 147.92 0.414 2.417 623.17 148.84 2742.88 655.13 2119.71 506.29 2.2983 5 151.85 0.375 2.669 640.12 152.89 2747.54 656.24 2107.42 503.35 2.3289 5.5 155.47 0.342 2	2.2	123.27	0.810	1.235	517.63	123.63	2710.60	647.42	2192.98	523.78	2.1372
2.8 131.20 0.646 1.548 551.45 131.71 2721.54 650.03 2170.08 518.32 2.1835 3 133.54 0.606 1.651 561.44 134.10 2724.66 650.77 2163.22 516.68 2.1981 3.5 138.87 0.524 1.908 584.28 139.55 2731.63 652.44 2147.35 512.89 2.2331 4 143.63 0.462 2.163 604.68 144.43 2737.63 653.87 2132.95 509.45 2.2664 4.5 147.92 0.414 2.417 623.17 148.84 2742.88 655.13 2119.71 506.29 2.2983 5 151.85 0.375 2.669 640.12 152.89 2747.54 656.24 2107.42 503.35 2.3289 5.5 155.47 0.342 2.920 655.81 156.64 2751.70 657.23 2095.90 500.60 2.3585 6 158.84 0.315 3.170 670.43 160.13 2755.46 658.13 2085.03 498.00	2.4	126.09	0.746	1.340	529.64	126.50	2714.55	648.36	2184.91	521.86	2.1531
3 133.54 0.606 1.651 561.44 134.10 2724.66 650.77 2163.22 516.68 2.1981 3.5 138.87 0.524 1.908 584.28 139.55 2731.63 652.44 2147.35 512.89 2.2331 4 143.63 0.462 2.163 604.68 144.43 2737.63 653.87 2132.95 509.45 2.2664 4.5 147.92 0.414 2.417 623.17 148.84 2742.88 655.13 2119.71 506.29 2.2983 5 151.85 0.375 2.669 640.12 152.89 2747.54 656.24 2107.42 503.35 2.3289 5.5 155.47 0.342 2.920 655.81 156.64 2751.70 657.23 2095.90 500.60 2.3585 6 158.84 0.315 3.170 670.43 160.13 2755.46 658.13 2085.03 498.00 2.3873 6.5 161.99 0.292 3.419 684.14 163.40 2758.87 658.94 2074.73 495.54 2.4152 7 164.96 0.273 3.667 697.07 166.49 2761.98 659.69 2064.92 493.20 2.4424 7.5 167.76 0.255 3.915 709.30 169.41 2764.84 660.37 2055.53 490.96 2.4690 8 170.42 0.240 4.162 720.94 172.19 2767.46 661.00 2046.53 488.80 2.4951 8.5 172.94 0.227 4.409 732.03 174.84 2769.89 661.58 2037.86 486.73 2.5206	2.6	128.73	0.693	1.444	540.88	129.19	2718.17	649.22	2177.30	520.04	2.1685
3.5 138.87 0.524 1.908 584.28 139.55 2731.63 652.44 2147.35 512.89 2.2331 4 143.63 0.462 2.163 604.68 144.43 2737.63 653.87 2132.95 509.45 2.2664 4.5 147.92 0.414 2.417 623.17 148.84 2742.88 655.13 2119.71 506.29 2.2983 5 151.85 0.375 2.669 640.12 152.89 2747.54 656.24 2107.42 503.35 2.3289 5.5 155.47 0.342 2.920 655.81 156.64 2751.70 657.23 2095.90 500.60 2.3585 6 158.84 0.315 3.170 670.43 160.13 2755.46 658.13 2085.03 498.00 2.3873 6.5 161.99 0.292 3.419 684.14 163.40 2758.87 658.94 2074.73 495.54 2.4152 7 164.96 0.273 3.667 697.07 166.49 2761.98 659.69 2064.92 493.20	2.8	131.20	0.646	1.548	551.45	131.71	2721.54	650.03	2170.08	518.32	2.1835
4 143.63 0.462 2.163 604.68 144.43 2737.63 653.87 2132.95 509.45 2.2664 4.5 147.92 0.414 2.417 623.17 148.84 2742.88 655.13 2119.71 506.29 2.2983 5 151.85 0.375 2.669 640.12 152.89 2747.54 656.24 2107.42 503.35 2.3289 5.5 155.47 0.342 2.920 655.81 156.64 2751.70 657.23 2095.90 500.60 2.3585 6 158.84 0.315 3.170 670.43 160.13 2755.46 658.13 2085.03 498.00 2.3873 6.5 161.99 0.292 3.419 684.14 163.40 2758.87 658.94 2074.73 495.54 2.4152 7 164.96 0.273 3.667 697.07 166.49 2761.98 659.69 2064.92 493.20 2.4424 7.5 167.76 0.265 3.915 709.30 169.41 2764.84 660.37 2055.53 490.96	3	133.54	0.606	1.651	561.44	134.10	2724.66	650.77	2163.22	516.68	2.1981
4.5 147.92 0.414 2.417 623.17 148.84 2742.88 655.13 2119.71 506.29 2.2983 5 151.85 0.375 2.669 640.12 152.89 2747.54 656.24 2107.42 503.35 2.3289 5.5 155.47 0.342 2.920 655.81 156.64 2751.70 657.23 2095.90 500.60 2.3585 6 158.84 0.315 3.170 670.43 160.13 2755.46 658.13 2085.03 498.00 2.3873 6.5 161.99 0.292 3.419 684.14 163.40 2758.87 658.94 2074.73 495.54 2.4152 7 164.96 0.273 3.667 697.07 166.49 2761.98 659.69 2064.92 493.20 2.4424 7.5 167.76 0.255 3.915 709.30 169.41 2764.84 660.37 2055.53 490.96 2.4690 8 170.42 0.240 4.162 720.94 172.19 2767.46 661.00 2046.53 488.80	3.5	138.87	0.524	1.908	584.28	139.55	2731.63	652.44	2147.35	512.89	2.2331
5 151.85 0.375 2.669 640.12 152.89 2747.54 656.24 2107.42 503.35 2.3289 5.5 155.47 0.342 2.920 655.81 156.64 2751.70 657.23 2095.90 500.60 2.3585 6 158.84 0.315 3.170 670.43 160.13 2755.46 658.13 2085.03 498.00 2.3873 6.5 161.99 0.292 3.419 684.14 163.40 2758.87 658.94 2074.73 495.54 2.4152 7 164.96 0.273 3.667 697.07 166.49 2761.98 659.69 2064.92 493.20 2.4424 7.5 167.76 0.255 3.915 709.30 169.41 2764.84 660.37 2055.53 490.96 2.4690 8 170.42 0.240 4.162 720.94 172.19 2767.46 661.00 2046.53 488.80 2.4951 8.5 172.94 0.227 4.409 732.03 174.84 2769.89 661.58 2037.86 486.73	4	143.63	0.462	2.163	604.68	144.43	2737.63	653.87	2132.95	509.45	2.2664
5.5 155.47 0.342 2.920 655.81 156.64 2751.70 657.23 2095.90 500.60 2.3585 6 158.84 0.315 3.170 670.43 160.13 2755.46 658.13 2085.03 498.00 2.3873 6.5 161.99 0.292 3.419 684.14 163.40 2758.87 658.94 2074.73 495.54 2.4152 7 164.96 0.273 3.667 697.07 166.49 2761.98 659.69 2064.92 493.20 2.4424 7.5 167.76 0.255 3.915 709.30 169.41 2764.84 660.37 2055.53 490.96 2.4690 8 170.42 0.240 4.162 720.94 172.19 2767.46 661.00 2046.53 488.80 2.4951 8.5 172.94 0.227 4.409 732.03 174.84 2769.89 661.58 2037.86 486.73 2.5206	4.5	147.92	0.414	2.417	623.17	148.84	2742.88	655.13	2119.71	506.29	2.2983
6 158.84 0.315 3.170 670.43 160.13 2755.46 658.13 2085.03 498.00 2.3873 6.5 161.99 0.292 3.419 684.14 163.40 2758.87 658.94 2074.73 495.54 2.4152 7 164.96 0.273 3.667 697.07 166.49 2761.98 659.69 2064.92 493.20 2.4424 7.5 167.76 0.255 3.915 709.30 169.41 2764.84 660.37 2055.53 490.96 2.4690 8 170.42 0.240 4.162 720.94 172.19 2767.46 661.00 2046.53 488.80 2.4951 8.5 172.94 0.227 4.409 732.03 174.84 2769.89 661.58 2037.86 486.73 2.5206	5	151.85	0.375	2.669	640.12	152.89	2747.54	656.24	2107.42	503.35	2.3289
6.5 161.99 0.292 3.419 684.14 163.40 2758.87 658.94 2074.73 495.54 2.4152 7 164.96 0.273 3.667 697.07 166.49 2761.98 659.69 2064.92 493.20 2.4424 7.5 167.76 0.255 3.915 709.30 169.41 2764.84 660.37 2055.53 490.96 2.4690 8 170.42 0.240 4.162 720.94 172.19 2767.46 661.00 2046.53 488.80 2.4951 8.5 172.94 0.227 4.409 732.03 174.84 2769.89 661.58 2037.86 486.73 2.5206	5.5	155.47	0.342	2.920	655.81	156.64	2751.70	657.23	2095.90	500.60	2.3585
7 164.96 0.273 3.667 697.07 166.49 2761.98 659.69 2064.92 493.20 2.4424 7.5 167.76 0.255 3.915 709.30 169.41 2764.84 660.37 2055.53 490.96 2.4690 8 170.42 0.240 4.162 720.94 172.19 2767.46 661.00 2046.53 488.80 2.4951 8.5 172.94 0.227 4.409 732.03 174.84 2769.89 661.58 2037.86 486.73 2.5206	6	158.84	0.315	3.170	670.43	160.13	2755.46	658.13	2085.03	498.00	2.3873
7.5 167.76 0.255 3.915 709.30 169.41 2764.84 660.37 2055.53 490.96 2.4690 8 170.42 0.240 4.162 720.94 172.19 2767.46 661.00 2046.53 488.80 2.4951 8.5 172.94 0.227 4.409 732.03 174.84 2769.89 661.58 2037.86 486.73 2.5206	6.5	161.99	0.292	3.419	684.14	163.40	2758.87	658.94	2074.73	495.54	2.4152
8 170.42 0.240 4.162 720.94 172.19 2767.46 661.00 2046.53 488.80 2.4951 8.5 172.94 0.227 4.409 732.03 174.84 2769.89 661.58 2037.86 486.73 2.5206	7	164.96	0.273	3.667	697.07	166.49	2761.98	659.69	2064.92	493.20	2.4424
8.5 172.94 0.227 4.409 732.03 174.84 2769.89 661.58 2037.86 486.73 2.5206	7.5	167.76	0.255	3.915	709.30	169.41	2764.84	660.37	2055.53	490.96	2.4690
	8	170.42	0.240	4.162	720.94	172.19	2767.46	661.00	2046.53	488.80	2.4951
9 175.36 0.215 4.655 742.64 177.38 2772.13 662.11 2029.49 484.74 2.5456	8.5	172.94	0.227	4.409	732.03	174.84	2769.89	661.58	2037.86	486.73	2.5206
	9	175.36	0.215	4.655	742.64	177.38	2772.13	662.11	2029.49	484.74	2.5456

Filière ME STAGE ENERGIE ET PROCESSUS

9.5	177.67	0.204	4.901	752.82	179.81	2774.22	662.61	2021.40	482.80	2.5702
10	179.88	0.194	5.147	762.60	182.14	2776.16	663.07	2013.56	480.93	2.5944
11	184.06	0.177	5.638	781.11	186.57	2779.66	663.91	1998.55	477.35	2.6418
12	187.96	0.163	6.127	798.42	190.70	2782.73	664.64	1984.31	473.94	2.6878
13	191.60	0.151	6.617	814.68	194.58	2785.42	665.29	1970.73	470.70	2.7327
14	195.04	0.141	7.106	830.05	198.26	2787.79	665.85	1957.73	467.60	2.7767
15	198.28	0.132	7.596	844.64	201.74	2789.88	666.35	1945.24	464.61	2.8197
16	201.37	0.124	8.085	858.54	205.06	2791.73	666.79	1933.19	461.74	2.8620
17	204.30	0.117	8.575	871.82	208.23	2793.37	667.18	1921.55	458.95	2.9036
18	207.11	0.110	9.065	884.55	211.27	2794.81	667.53	1910.27	456.26	2.9445
19	209.79	0.105	9.556	896.78	214.19	2796.09	667.83	1899.31	453.64	2.9849
20	212.37	0.100	10.047	908.56	217.01	2797.21	668.10	1888.65	451.10	3.0248
21	214.85	0.095	10.539	919.93	219.72	2798.18	668.33	1878.25	448.61	3.0643
22	217.24	0.091	11.032	930.92	222.35	2799.03	668.54	1868.11	446.19	3.1034
23	219.55	0.087	11.525	941.57	224.89	2799.77	668.71	1858.20	443.82	3.1421
24	221.78	0.083	12.020	951.90	227.36	2800.39	668.86	1848.49	441.50	3.1805
25	223.94	0.080	12.515	961.93	229.75	2800.91	668.99	1838.98	439.23	3.2187
26	226.03	0.077	13.012	971.69	232.08	2801.35	669.09	1829.66	437.01	3.2567
27	228.06	0.074	13.509	981.19	234.35	2801.69	669.17	1820.50	434.82	3.2944
28	230.04	0.071	14.008	990.46	236.57	2801.96	669.24	1811.50	432.67	3.3320
29	231.96	0.069	14.508	999.50	238.73	2802.15	669.28	1802.65	430.56	3.3695
30	233.84	0.067	15.009	1008.33	240.84	2802.27	669.31	1793.94	428.48	3.4069

7.7. Consommations

7.7.1. Consommation électrique 2010

2010	Consommation kWh	Coût €/kWh	Coût totale HT €
Janvier	16169	HPH = 0,10770 (11660) HCH = 0,07392 (4509) Prime fixe = 231,60	1974,32
Février	19546	HPH = 0,10770 (14181) HCH = 0,07392 (5365) Prime fixe = 231,60	2472,89
Mars	19670	HPH = 0,10770 (14111) HCH = 0,07392 (5559) Prime fixe = 231,60	2335,11
Avril	14422	HPH = 0,10770 (1018) HCH = 0,07392 (244) HPE = 0,03640 (9422) HCE = 0,02682 (3738) Prime fixe = 231,60	937,91
Mai	17926	HPE =0,03640 (13259) HCE =0,02682 (4667) Prime fixe = 231,60	990,93
Juin	19293	HPE =0,03640 (1445) HCE =0,02682 (4848) Prime fixe = 231,60	1045,58
Juliet	14599	HPE =0,03640 (10808) HCE =0,02682 (3791) Prime fixe = 231,60	862,12
Août	11914	HPE =0,03802 (8504) HCE =0,02765 (3410) Prime fixe = 291,60	834,42
Septembre	13160	HPE =0,04082 (9206) HCE =0,02908 (3954) Prime fixe = 291,60	913,92
Octobre	13696	HPE =0,04082 (9924) HCE =0,02908 (3772) Prime fixe = 291,60	940,50
Novembre	18055	HPH = 0,10098 (10532) HCH = 0,07063 (4147) HPE = 0,04082 (2570) HCE = 0,02908 (806) Prime fixe = 291,60 + 30,77	1939,84
Décembre	19819	HPH =0,10098 (14473) HCH =0,07063 (5346) Prime fixe = 291,60	2305,63
Totale annuelle	198269		17553,17

Source obtenue des factures mensuelles d'EDF, de toute l'année 2010

7.7.2. Consommation électrique différents ateliers

		Par jour		Janvier 2011			Février 2011			
Machine	Puiss. (kW)	Hr. fonct.	Energie (kWh)	Cout (€)	Jours	Energie (kWh)	Cout (€)	Jours	Energie (kWh)	Cout (€)
Atelier broyag	ge									
Trémie	2,66	4	10,64	1,0744272	8	85,12	8,5954176	4	42,56	4,2977088
Epandeur	1,5	4	6	0,60588	8	48	4,84704	4	24	2,42352
Chaine à raclette	2,2	4	8,8	0,888624	8	70,4	7,108992	4	35,2	3,554496
Détecteur métal	0,025	4	0,1	0,010098	8	0,8	0,080784	4	0,4	0,040392
Broyeur	23,5	4	94	9,49212	8	752	75,93696	4	376	37,96848
Aspirateur	3	1	3	0,30294	8	24	2,42352	4	12	1,21176
Totale	32,885	42	245,08	12,374089		980,32	98,992714		490,16	49,496357
Atelier réglisse										
Chaine	3	4	12	1,21176	8	96	9,69408	4	48	4,84704
Racleur	2,2	4	8,8	0,888624	8	70,4	7,108992	4	35,2	3,554496
Cueilleur	2,2	2	4,4	0,444312	8	35,2	3,554496	4	17,6	1,777248
Système hydraulique	5,6	1	5,6	0,565488	8	44,8	4,523904	4	22,4	2,261952
Tapis déchets	1,5	1	1,5	0,15147	8	12	1,21176	4	6	0.60588
Chaudière	1,5	10	1,5	0,13147	8	0	0	14	0	0,00388
Pompe circuit froid	2,2	4	8,8	0,888624	8	70,4	7,108992	14	123,2	12,440736
Brûleur	1,4	4	5,6	0,565488	8	44,8	4,523904	14	78,4	7,916832
Cuiseur	1,5	10	15	1,5147	8	120	12,1176	14	210	21,2058
Pompe refrodiss.	1,5	1	1,5	0,15147	6	9	0,90882	6	9	0,90882
Pompe filtration	1.1	2	2,2	0,222156	6	13,2	1,332936	6	13,2	1,332936
Broyeur	4	2	8	0,80784	6	48	4,84704	6	48	4,84704
Diffuseur	4	4	16	1,61568	6	96	9,69408	6	96	9,69408
Ventilation	0,75	10	7,5	0.75735	8	60	6.0588	14	105	10,6029
Malaxeur	0,75	10	7,5	0,75735	0	0	0	0	0	0
Malaxeurs concentrait	11,4	6	68,4	6,907032	6	410,4	41,442192	6	410,4	41,442192
Totale	35,7	71	172,8	17,449344		1130,2	114,1276		1222,4	123,43795
Atelier Condit		t		·						
Pompe osmosis	2,2	2	4,4	0,444312	9,5	41,8	4,220964	18	79,2	7,997616
Pompe eau osmose	1,42	2	2,84	0,2867832	9,5	26,98	2,7244404	18	51,12	5,1620976
Compress.	11	4	44	4,44312	20	880	88,8624	20	880	88,8624
	14,62	8	51,24	5,1742152	39	948,78	95,807804		1010,32	·
Préparation bouteilles ligne A										
Pompe filtrage	2,2	2	4,4	0,444312	8,5	37,4	3,776652	6,5	28,6	2,888028
Système chauffage	18	5	90	9,0882	9,5	855	86,3379	16,5	1485	149,9553

Filière ME STAGE ENERGIE ET PROCESSUS

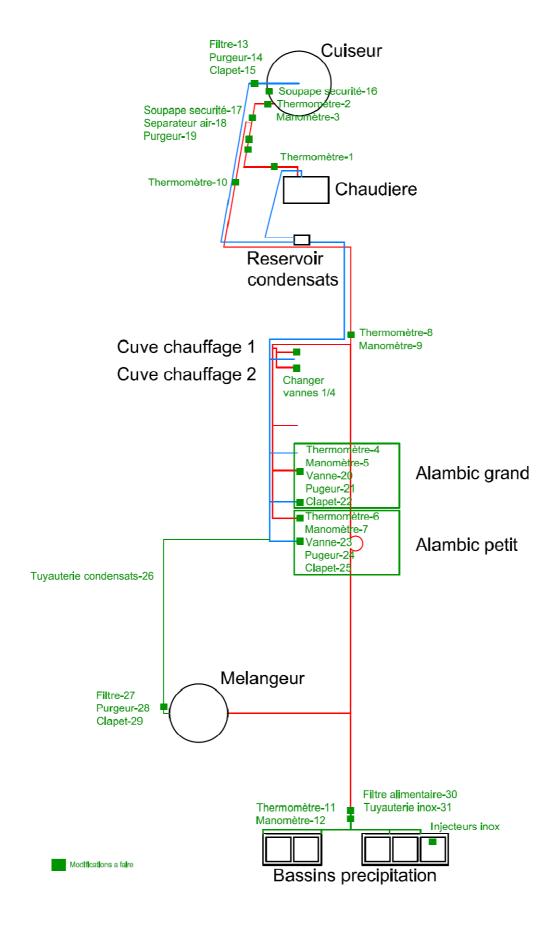
Pompe chauffage	2,2	8	17,6	1,777248	9,5	167,2	16,883856	16,5	290,4	29,324592
Mélangeur petit (x2)	1,5	10	15	1,5147	3	45	4,5441	7	105	10,6029
Mélangeurs grands	2,2	10	22	2,22156	7	154	15,55092	10	220	22,2156
Pompe cuve	2,2	2	4,4	0,444312	9	39,6	3,998808	16,5	72,6	7,331148
Tapis			,				·			
bouteilles Pompe	0,37	8	2,96	0,2989008	9,5	28,12	2,8395576	16,5	48,84	4,9318632
injection	0,37	8	2,96	0,2989008	9,5	28,12	2,8395576	16,5	48,84	4,9318632
Pompe vide	0,66	8	5,28	0,5331744	9,5	50,16	5,0651568	16,5	87,12	8,7973776
Machine remplissa.	2,2	8	17,6	1,777248	9,5	167,2	16,883856	16,5	290,4	29,324592
Machine bouchons	0,44	8	3,52	0,3554496	1	3,52	0,3554496	10	35,2	3,554496
Vise bouchons	0,18	8	1,44	0,1454112	1	1,44	0,1454112	10	14,4	1,454112
Bouchons ANTESITE	0,45	8	3,6	0,363528	8,5	30,6	3,089988	6,5	23,4	2,362932
Vise bouchons A.	0,18	8	1,44	0,1454112	8,5	12,24	1,2359952	6,5	9,36	0,9451728
Machine bouchons A.	0,18	8	1,44	0,1454112	8,5	12,24	1,2359952	6,5	9,36	0,9451728
Marquage au laser	0,18	8	1,44	0,1454112	9,5	13,68	1,3814064	16,5	23,76	2,3992848
Deposeuse manchons	0,37	8	2,96	0,2989008	8,5	25,16	2,5406568	6,5	19,24	1,9428552
Machine Deposeuse	0,18	8	1,44	0,1454112	8,5	12,24	1,2359952	6,5	9,36	0,9451728
Caléfacteur manchons	3,7	8	29,6	2,989008	8,5	251,6	25,406568	6,5	192,4	19,428552
Etiquetage	0,55	8	4,4	0,444312	9,5	41,8	4,220964	16,5	72,6	7,331148
Tapis	0,75	8	6	0,60588	9,5	57	5,75586	16,5	99	9,99702
Fermeture boites	0,18	8	1,44	0,1454112	9,5	13,68	1,3814064	16,5	23,76	2,3992848
Tapis	0,37	8	2,96	0,2989008	9,5	28,12	2,8395576	16,5	48,84	4,9318632
Tapis	0,18	8	1,44	0,1454112	9,5	13,68	1,3814064	16,5	23,76	2,3992848
Totale ligne A	39,79		245,32	24,772414		2088,8	210,92702		3281,24	331,33962
Préparation b	outeilles li	gne N								
Pompe rempliss.	2,2	2	4,4	0,444312	17,5	77	7,77546	17,5	77	7,77546
Mélangeur	0,75	10	7,5	0,75735	17,5	131,25	13,253625	17,5	131,25	13,253625
Mélangeur	0,3	10	3	0,30294	17,5	52,5	5,30145	17,5	52,5	5,30145
Pompe cuve	2,2	2	4,4	0,444312	17,5	77	7,77546	17,5	77	7,77546
Tapis bouteilles	0,37	8	2,96	0,2989008	17,5	51,8	5,230764	17,5	51,8	5,230764
Pompe vide	0,44	8	3,52	0,3554496	17,5	61,6	6,220368	17,5	61,6	6,220368
Pompe injection	0,55	8	4,4	0,444312	17,5	77	7,77546	17,5	77	7,77546
Machine remplissa.	1,5	8	12	1,21176	17,5	210	21,2058	17,5	210	21,2058
Machine bouchons	0,5	8	4	0,40392	17,5	70	7,0686	17,5	70	7,0686

Filière ME STAGE ENERGIE ET PROCESSUS

Vise bouchons	0,37	8	2,96	0,2989008	17,5	51,8	5,230764	17,5	51,8	5,230764
Marquage au laser	0,18	8	1,44	0,1454112	17,5	25,2	2,544696	17,5	25,2	2,544696
Tapis	0,37	8	2,96	0,2989008	17,5	51,8	5,230764	17,5	51,8	5,230764
Etiquetage	0,18	8	1,44	0,1454112	17,5	25,2	2,544696	17,5	25,2	2,544696
Tapis	0,37	8	2,96	0,2989008	17,5	51,8	5,230764	17,5	51,8	5,230764
Boites NOIROT	1,1	8	8,8	0,888624	7,5	66	6,66468	7,5	66	6,66468
Fermeture boites	0,15	8	1,2	0,121176	17,5	21	2,12058	17,5	21	2,12058
Tapis Boites	0,28	8	2,24	0,2261952	17,5	39,2	3,958416	17,5	39,2	3,958416
Totale ligne N	9,17	118	62,26	7,0867764		1140,15	115,13235		1140,15	115,13235
Totale	63,58	126	358,82	37,033405		4177,73	421,86718		5431,71	548,49408
Zone stockage	et comm	andes								
Chariot 1	34	3	102	10,29996	20	2040	205,9992	20	2040	205,9992
Chariot 2	30	2	60	6,0588	20	1200	121,176	20	1200	121,176
Chariot 3	6	2	12	1,21176	20	240	24,2352	20	240	24,2352
Emballage	1	2	2	0,20196	20	40	4,0392	20	40	4,0392
Totale	71	9	176	17,77248		3520	355,4496		3520	355,4496
Bureaux, chau	ffage usin	e, illum	ination, éc	uipes auxili	aires					
Chaudière chauffage				0	20	0	0	20	0	
Brûleur	0,92	3	2,76	0,2787048	20	55,2	5,574096	20	55,2	5,574096
Illumination	20	12	240	24,2352	20	4800	484,704	20	4800	484,704
Ventilation (x2)	1,5	24	36	3,63528	28	1008	101,78784	28	1008	101,78784
Plante dépuration	2	24	48	4,84704	28	1344	135,71712	28	1344	135,71712
Réfrigérateur	1,4	6	8,4	0,848232	20	168	16,96464	20	168	16,96464
Mélangeur neutralis.	0,75	24	18	1,81764	28	504	50,89392	28	504	50,89392
Pompe acide	0,75	1	0,75	0,075735	20	15	1,5147	20	15	1,5147
Pompe soude (x2)	1,2	1	1,2	0,121176	20	24	2,42352	20	24	2,42352
Autres	10	8	80	8,0784	20	1600	161,568	20	1600	161,568
Totale	26,57		353,16	35,662097		9518,2	961,14784		9518,2	961,14784

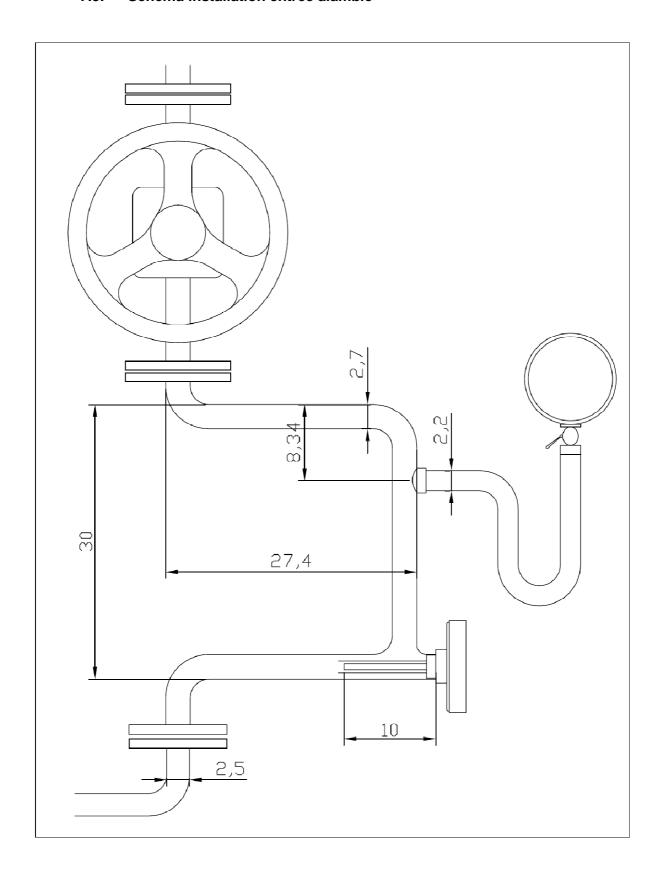
TOTALES 230,105 256 1308,82 120,59032 19326,45 1951,5849 20182,5 2038,0258

Ces chiffres ont été obtenus à partir de la puissance de chaque machine pour son facteur d'utilisation.


7.7.3. Consommation gaz 2010

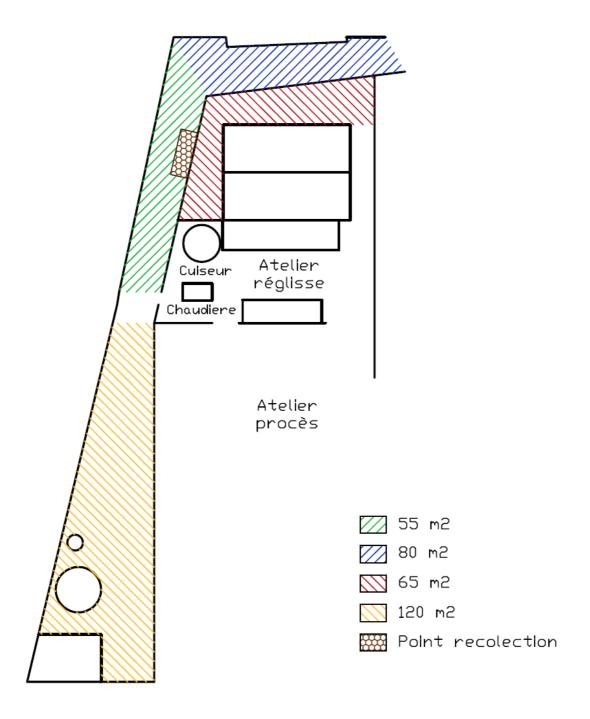
Période	m³	Consommation kWh	Coût €/kWh	Coût totale €
Janvier - Février	682	7453	0,0544	422,16
Mars - Avril	1907	20691	0,0544	509,34
Mai - Juin	488	5297	0,0597	330,09
Juillet - Août	159	1720	0,0597	115,70
Septembre - Octobre	1421	15546	0,062	547,58
Novembre - Décembre	465	5087	0,062	329,14
Totale annuelle	5122	55794	0,0587	2254,01

Source factures bimensuelles de GDF



7.8. Schéma circuit vapeur

7.9. Schéma installation entrée alambic


7.10. Table PCI

Type combustible	Humidité	Pouvoir calorifique kWh/kg	Pouvoir calorifique kJ/kg	Poids spécifique kg/m³	X kg = 1L fuel						
Bois											
Plaquettes Forestières / Coupe fraîche	55%	2,00	7200	310 kg/m ³	4,98 kg/L						
Plaquettes Forestières / Stock	40%	2,89	10404	240 kg/m ³	3,44 kg/L						
Ecorces Sapin	50%	2,14	7704	280 kg/m ³	4,65 kg/L						
Plaquettes Menuiserie	20%	4,22	15192	175 kg/m ³	2,36 kg/L						
Sciures Bois	20%	4,20	15120	165 kg/m ³	2,38 kg/L						
Granulés Bois / Briquettes Bois	6%	4,90	17640	660 kg/m ³	2,03 kg/L						
Bûches hêtre	20%	4,08	14688	425 kg/m ³	2,44 kg/L						
Bûches hêtre	45%	2,61	9396	650 kg/m ³	3,81 kg/L						
Agriculture											
Paille "gris"	15%	4,17	15012	120 kg/m ³	2,43 kg/L						
Paille ''jaune''	15%	4,00	14400	100 kg/m ³	2,49 kg/L						
Granules Paille	8%	4,44	15984	600 kg/m ³	2,24 kg/L						
Céréales : orge, blé, siegle	15%	4,17	15012	710 kg/m ³	3,81 kg/L						
Avoine	15%	4,50	16200	500 kg/m ³	2,22 kg/L						
Maïs	15%	4,30	15480	830 kg/m ³	2,31 kg/L						
Tournesol (graines)	9%	5,56	20016	600 kg/m ³	1,79 kg/L						
Colza pure (graines 42% huile)	9%	6,83	24588	700 kg/m ³	1,46 kg/L						
Tourteau de colza (14% gras)	10%	4,97	17892	650 kg/m ³	1,99 kg/L						
	Déc	hets / Fossile									
Déchets Domestique	35%	2,50	9000	475 kg/m ³	3,98 kg/L						
Charbon	10%	7,40	26640	750 kg/m ³	1,36 kg/L						
Fuel Domestique	0	11,86	42696	840 kg/m ³	0,84 kg/L						
Fuel Lourd	0	11,22	40392	980 kg/m ³	0,98 kg/L						
Huile de vidages moteurs	0	11,67	42012	900 kg/m ³	0,90 kg/L						
Gaz naturel	0	10,83	38988	-	-						

Source www.reka-france.fr

7.11. Emplacements possibles de la chaudière de biomasse

7.12. Entreprises contactées

Ingénieries et consultants

PROJAGRO → Ingénierie et construction agro-alimentaire Michel CEROUGE, Directeur Général Adjoint

Groupe KEMTEC \rightarrow Assistance en mangement de projets industriels

Fabrice BAILAVOINE, Commercial

 $\mathsf{APAVE} \to \mathsf{Service} \ \mathsf{environnement} \ \mathsf{et} \ \mathsf{risques} \ \mathsf{industriels}$

Sophie PONDEVIE, Ingénieure

Spécialistes biomasse

 $\mbox{MTCB} \rightarrow \mbox{Mat\'eriels Thermiques} - \mbox{Chaudi\`eres et Br\^uleurs}$ $\mbox{Pierre GIGLOTTI, directeur commercial}$

 $\mathsf{REKA}\;\mathsf{EQUIPEMENT}\to\mathsf{Biomasse}$

Jean-Pierre GROFF, Ingénieur d'études

Appareils vapeur

TLV → Installations et appareils pour la vapeur Jean-Paul BALMAN, Ingénieur Responsable

SPIRAX SARCO → Installations et appareils pour la vapeur Jean-Luc MALLET, Délégué Régional

Jean-Luc MALLET, Delegue Negloi

 ${\sf SECTORIEL} \to {\sf robinetterie} \ {\sf industrielle}$

Loic BROSSAT, Ingénieur technico-commercial

Equipements pour l'industrie

LA BARRIERE AUTOMATIQUE \rightarrow Automatismes de sécurité Xavier SCHLEITER

FAURE → Automatismes

Christian CAPPELLETTI, Responsable Produits Automatisme

BARRIQUAND → Technologies Thermiques

Pascal GAUCHET, Ingénieur commercial thermicien

SMG → Société Métallurgique de Grenoble

Monsieur d'ASCOLI

- CHRISTAUD → Robinetterie, tuyauterie industrielle Jocelyn MATHIAN, commercial
- RIELLO → Brûleurs et équipements pour chaudières Francis DEHEEGHER, Directeur Technique
- AGITEC → Agitateurs professionnels

 Gregory BADEY, Responsable Technique
- RAVANAT → Chaudronnerie

 Jean Louis COLLET, Responsable Technique
- OLSA → Equipement processus
- Jean Marc LENOIR, Responsable commercial
- ROUSSELET ROBATEL → Centrifugation

 Luc Buisson, Responsable Technique

8. Bibliographies

La recherche d'informations a été faite pour la plus grande partie sur internet, et aussi à travers des fournisseurs de différents équipements.

www.spiraxsarco.com

www.tlv.com

www.reka-france.fr

www.mtcbsa.com

www.google.com

www.wikipedia.com

www.mityc.es

www.etseib.upc.edu

www.gazdefrance.fr

www.edf.com

www.engineeringtoolbox.com

www.ineris.fr

Documents des années antérieurs de mon école d'origine. ETSEIB, UPC

INSA Lyon