

ROYAUME DU MAROC

مكتب التكوين المهني وإنعساش الشكف ل

Office de la Formation Professionnelle et de la Promotion du Travail

DIRECTION RECHERCHE ET INGENIERIE DE FORMATION

http://module01-ofppt.blogspot.com

RESUME THEORIQUE &
GUIDE DE TRAVAUX PRATIQUES

MODULE N 18: DES SYSTEMES
MECANIQUES

SECTEUR: ELECTROTECHNIQUE

SPECIALITE: MAINTENANCE DES

MACHINES OUTILS ET AUTRES MACHINES DE

PRODUCTION AUTOMATISEES

NIVEAU: TECHNICIEN SPECIALISE

ANNEE 2007

pt.blogspot.com

Résumé de Théorie	et
Guide de travauy	
nratiques	

Modula 18 · Démontana at montana des sustàmas

Document élaboré par :

Nom et prénom **EFP** DR

KISSIOVA-TABAKOVA CDC Génie DRIF

Raynitchka Electrique

Révision linguistique

Validation

SOMMAIRE

Pré	sentation du Module			g
	SUME THEORIQUE			
	ERENTS PROCEDES D'ASSEMBLAGE			
1.1.	Rivetage			
1.1.1.	•			
1.1.2.				
1.1.3.	71:			
1.2.	Goupillage			
1.2.1.	Goupilles cylindriques non trempées			
1.2.1.				
1.2.3.				
1.2.3.				
1.2.5.				
1.2.6.				
1.3.	Clavetage			
1.3.1.	•			
1.3.1.				
1.3.2. 1.4.	Assemblage par éléments filetés			
1.4.1.				
1.4.1.				22
1.4.2.				
1.4.3. 1.4.4.				
1.4.4.	Implantation d'une vis Différents types de vis d'assemblage			
1.4.6. 1.4.7.	Goujons Boulons			
1.4.8.				
1.4.9.				
1.5.	Ecrous et rondelles			
1.5.1.				
1.5.2.				
1.5.3.				
1.5.4.	3			
1.5.5.				
1.6.	Construction soudée NF E 04-020			
1.6.1.				
1.6.2.				
	ICIPAUX ORGANES DE TRANSMISSION DE PUISSANCI			
2.1.	Transmission générale et individuelle	Erreur	Signet no	n défini.
	Arbre de transmission			
2.2.1.	Caractéristiques			
2.2.2.				
2.2.3.				
2.3.	Coussinets, roulements et paliers			
2.3.1.	Bagues et coussinets			
2.3.2.				
2.3.3.	•			
2.3.4.				
2.3.5.				
2.4.	Contrôle de l'alignement des arbres			
2.4.1.	Terminologie d'alignement			
2.4.2.	7			
2.5.	Guidage en translation			
2.6.	Lubrification et graissage			
2.6.1.	Huiles et graisses	Erreur	Signet no	n défini.
nttn://m	odule01-ofppt.blogspot.com			
	отренительности	-		

Module 18 : Démontage et montage des systèmes mécaniques

2.6.2. Lubrification et protection des roulements	Erreur! Signet non défini.
2.6.3. Graisseurs, bouchons et voyants	
3. TRANSMISSION DE PUISSANCE SANS TRANSFORMAT	ION DE MOUVEMENT Erreur!
Signet non défini.	F I O'
3.1. Accouplements et embrayages	
3.1.1. Puissance et couple transmissibles par les accoupler	
3.1.2. Défauts d'alignement des accouplements	
3.1.3. Accouplements permanents	
3.2. Transmission par courroles et par chaînes	
3.2.1. Transmission par courroles et par chames	
3.2.2. Transmission par roues et chaînes	· · · · · · · · · · · · · · · · · · ·
4. TRANSMISSION PAR ENGRENAGES	
4.1. Engrainage	
4.1.1. Engrenages droits à denture droite	
4.1.2. Engrenages droits à denture hélicoïdale	
4.1.3. Engrenages coniques ou à axes concourants	
4.1.4. Engrenage roue et vis sans fin	
4.2. Détériorations des engrainages	
4.2.1. Piqûres	Erreur! Signet non défini.
4.2.2. Ecaillage	Erreur ! Signet non défini.
4.2.3. Grippage	
4.2.4. Rides	
4.2.5. Usure par abrasion	Erreur ! Signet non défini.
4.2.6. Rupture des dents	Erreur ! Signet non défini.
5. TRANSMISSION DE PUISSANCE AVEC TRANSFORMAT	ION DE MOUVEMENT Erreur !
Signet non défini.	
5.1. Système vis - écrou	Erreur ! Signet non défini.
5.2. Système bielle - manivelle	
5.3. Bielles et manivelles à coulisse	
5.3.1. Manivelle à coulisse	
5.3.2. Tige guidée à coulisse	
5.3.3. Bielle à coulisse à retour rapide	
5.4. Cames	
5.4.1. Cames disques 5.4.2. Cames à rainures	
5.4.2. Cames à ramures	
6. GENERALITES DE LA MAINTENANCE	Freur I Signet non défini
6.1. Définition générale	
6.2. Différentes formes de maintenance	
6.2.1. Maintenance préventive	
6.2.2. Maintenance corrective	
7. NIVEAUX DE MAINTENANCE	
7.1. Niveau 1	
7.2. Niveau 2	
7.3. Niveau 3	
7.4. Niveau 4	Erreur ! Signet non défini.
7.5. Niveau 5	Erreur ! Signet non défini.
8. PREPARATION DU POSTE DE TRAVAI	Erreur ! Signet non défini.
8.1. Constitution d'un poste de travail	Erreur! Signet non défini.
8.2. Ordre ou plan de démontage	
9. EXECUTION DU DEMONTAGE	•
9.1. Règles générales	
9.2. Repérage des pièces	
9.3. Nettoyage des pièces	
9.4. Méthode générale de démontage et de montage	
9.5. Particularités de démontage	
9.5.1. Pièces emmanchées ou non à force	
OFPPT / DRIF / CDC Génie Electrique	3

Résumé de Théorie et Guide de travaux pratiques

Module 18 : Démontage et montage des systèmes mécaniques

9.5.2.	Pièces frettées	Erreur	! Signet r	non c	défini.
9.5.3.	Pièces soudées à basse température				
9.5.4.	Pièces rivées	Erreur	! Signet r	non c	défini.
9.5.5.	Pièces serties				
9.5.6.	Pièces vissée	Erreur	! Signet r	non c	défini.
9.5.7.	Pièces d'arrêt	Erreur	! Signet r	non c	défini.
9.5.8.	Pieds de centrage cylindriques	Erreur	! Signet r	non c	défini.
GUID	E DE TRAVAUX PRATIQUES	Erreur	! Signet i	non d	défini.
TP1 -	Réducteur de vitesse à roues dentées et à arbre creux	Erreur	! Signet	non (défini.
TP2 -	Engrenage	Erreur	! Signet i	non d	défini.
TP3 –	Transmission de puissance sans transformation de mouvem	ent	Erreur!	Signe	et nor
défini.					
TP4 -	Transmission de mouvement par poulie et courroie	Erreur	! Signet	non (défini.
TP5 –	Transmission de puissance par friction	Erreur	! Signet	non (défini.
TP6 -	Réducteur de vitesse à engrenage conique	Erreur	! Signet	non (défini.
	Montage des roulements				
	UATION DE FIN DE MODULE				
LISTE	E DE REFERENCES BIBLIOGRAPHIQUES	Erreur	! Signet r	າon d	léfini.

máconiauco

MODULE : 18 DEMONTAGE ET MONTAGE DES SYSTEMES MECANIQUES

Durée: 80 heures

OBJECTIF OPERATIONNEL

COMPORTEMENT ATTENDU

Pour démontrer sa compétence le stagiaire doit :

Acquérir les méthodes et les technologies utilisées pour effectuer le démontage, le remontage et l'entretien des systèmes mécaniques

selon les conditions, les critères et les précisions qui suivent.

CONDITIONS D'EVALUATION

- Travail individuel.
- A partir :
 - de schémas ou de plan de circuits;
 - de manuels techniques;
 - d'abaques et de tableaux.
- A l'aide :
 - de composants, de raccords et de conduits;
 - d'outillage et d'équipement;
 - des instruments de mesure et de contrôle;
 - de machines et d'équipement industriel.

CRITERES GENERAUX DE PERFORMANCE

- Respect des règles de santé et de sécurité au travail.
- Respect du processus de travail.
- Respect des plans ou des schémas.
- Utilisation appropriée de l'outillage et de l'équipement.
- Travail soigné et propre.
- Exactitude des calculs.
- Respect des normes.

OBJECTIF OPERATIONNEL DE COMPORTEMENT

ELEMENTS DE COMPETENCE CRITERES DE PERFORMANCE

- A) Caractériser les principaux organes de liaison et d'assemblage dans les mécanismes en identifiant les champs d'application des mécanismes industriels
- ✓ Caractères et modes des liaisons
- ✓ Différents procédés d'assemblage :
 - Rivetage
 - Goupillage
 - Clavetage
 - Boulonnage
 - Vissage
 - Ecrous et rondelles
- B) Caractériser les principaux organes de transmission de puissance entre deux arbres en prolongement
- ✓ Transmission générale et individuelle
- ✓ Arbre de transmission
- ✓ Paliers
- Accouplements permanents et temporaires
- ✓ Contrôle de l'alignement des arbres
- √ Graissage des paliers
- ✓ Etude des chaînes cinématiques des différents accouplements
- C) Démonter et remonter les roulements
- ✓ Différents types de roulements
- ✓ Désignation des roulements
- ✓ Méthodes correctes de montage et de démontage
- ✓ Utilisation correcte des équipements de démontage et de remontage
- ✓ Lubrification des roulements
- √ Ajustement des roulements
- D) Caractériser les principaux organes de transmission de puissance entre deux arbres non en prolongement
- ✓ Transmission de puissance par liaisons :
 - Articulée
 - Souple entre arbres éloignés
 - Rigide entre arbres rapprochés
- ✓ Transmission de puissance avec modification de la vitesse ou le sens de rotation :
 - Inverseurs
 - Réducteurs de vitesse
 - Boîtes de vitesse
 - Variateurs

Module 18 : Démontage et montage des systèmes mécaniques

- ✓ Démontage, remontage et étude de la chaîne cinématique de :
 - La boîte de vitesse d'une faiseuse
 - La table d'une fraiseuse
 - Le traînard d'un tour
- E) Analyser les conditions de fonctionnement d'un système mécanique
- ✓ Méthodes générales d'analyse
- ✓ Conditions générales de fonctionnement :
 - Condition d'alimentation
 - Condition d'utilisation
 - Condition d'assemblage
 - Condition de guidage
 - Condition de graissage
- ✓ Analyse d'un organe
- ✓ Analyse d'un mécanisme
- F) Apporter des remèdes à la dégradation des machines
- ✓ Action du milieu ambiant :
 - Corrosion
 - Vieillissement
- ✓ Effet du fonctionnement
 - Déformation et rupture
 - Echauffement et usure
- ✓ Bruits et vibrations :
 - Chocs entre les éléments mobiles
 - Désalignement des paliers
- G) Appliquer les mesures de sécurité
- ✓ Précautions à prendre lors de l'utilisation des outils de montage et de démontage des organes mécaniques
- ✓ Mesures préventives pendant l'utilisation de l'appareil de chauffage par induction
- H) Appliquer les règles de protection de l'environnement
- ✓ Stockage adéquat aux normes de la protection de l'environnement des :
 - Produits pétroliers de nettoyage des organes mécaniques (gasoil, essence de térébenthine...)
 - Huiles et graisses usée
- Travailler avec sécurité pendant les opérations de démontage et de remontage des organes mécaniques
- ✓ Application correcte des mesures de sécurité et des précautions d'emploi :
 - Nettoyer l'outillage avant l'utilisation
 - Choisir et utiliser l'outillage de démontage et de remontage qui convient (tournevis, clés, etc.)

Résumé de Théorie et
Guide de travaux
pratiques

Module 18 : Démontage et montage des systèmes mécaniques

- Sélectionner des positions correctes d'outillage pour éviter tout glissement qui peut occasionner les accidents graves
- Nettoyer immédiatement les flaques d'huiles laissées sur le sol
- Le soulèvement d'un poids doit être fait avec les muscles des jambes et des épaules
- Pousser les chariots en regardant attentivement devant soi et à faible vitesse
- Transporter et conserver une charge ou un fardeau aussi bas que possible
- Avant de descendre la charge, s'assurer que les compagnons de travail sont hors du danger
- Les mains et les pieds ne doivent jamais s'engager entre un rouleau et le sol ou le fardeau
- Eviter un lien usé et lire sur l'appareil la force maximale indiquée
- Se placer à côté du levier pendant la manœuvre
- Porter des gants
- Les personnes ayant un stimulateur cardiaque ne doivent pas se servir de l'appareil de chauffage par induction. D'autre appareils électroniques sensibles, par exemple des montres, peuvent également être affectés. Ne pas utiliser cet appareil dans des zones où il a des risques d'explosion.
- Toujours se conformer aux instructions de fonctionnement
- Prévoir toujours une butée ou un écrou de serrage pendant le démontage par la méthode à pression d'huile et des roulements montés sur des portées coniques

Présentation du Module

« Démontage et montage des systèmes mécaniques » est un module de deuxième année de formation qui permet aux stagiaires de la spécialité « Maintenance des Machines Outils et Autres Machines de Production Automatisées » de se familiariser avec les caractéristiques principales des organes de liaison et de transmission de puissance, ainsi que des conditions de fonctionnement des systèmes mécaniques et des méthodes de maintenance (démontage, montage, lubrification, etc.). L'objectif de ce dernier est de traiter également l'application des mesures de sécurités et les règles de protection de l'environnement. Les stagiaires acquièrent des connaissances aux méthodes générales d'analyse du fonctionnement d'un système mécanique ainsi qu'à l'action de remédier aux défaillances. Ils sont placés dans une situation où ils peuvent analyser les circuits, faire des mesures nécessaires et réparer les défaillances à l'aide des outils appropriés.

máganiaugo

Module 18 : DEMONTAGE ET MONTAGE DES SYSTEMES MECANIQUES

RESUME THEORIQUE

1. DIFFERENTS PROCEDES D'ASSEMBLAGE

Les parties d'un ensemble mécanique sont liées de façons différentes selon les exigences de robustesse, de maintenabilité, de fiabilité et d'autres.

1.1. Rivetage

Le rivetage est un procédé qui consiste à refouler l'extrémité d'une tige cylindrique munie d'une tête (rivet) afin de former une rivure qui permettra de maintenir solidement deux pièces. La liaison obtenue par rivetage est permanente et indémontable. C'est un procédé très utilisé (notamment en aéronautique) qui présente de nombreux avantages : économique, fiable, cadence de rivetage élevée, assemblage de pièces de matière et d'épaisseurs différentes.

L'assemblage se fait à froid ce qui évite les altérations d'origine thermique (structure, déformation), mais la préparation est longue. L'étanchéité est possible mais difficile. Les différentes parties sont soumises à une corrosion électrolytique du type « pile ».

1.1.1. Montage

Le rivet travaille soit à l'extension (fig. 1-1a), soit au cisaillement (fig. 1-1b). Le travail au cisaillement est préférable. Les rivures avec des rivets de diamètre $d \ge 10 \ mm$ sont faites à chaud.

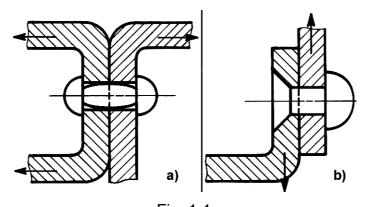


Fig. 1-1

La disposition des rivures peut être :

- Recouvrement simple (fig. 1-2a);
- Couvre joint simple $e_1 \ge 1,5$ **e** (fig. 1-2b);
- Couvre joint double $e_1 \ge 0.75 e$ (fig. 1-2c);
- Rivures en chaîne (fig. 1-2d) et ou quinconces (fig. 1-2e).

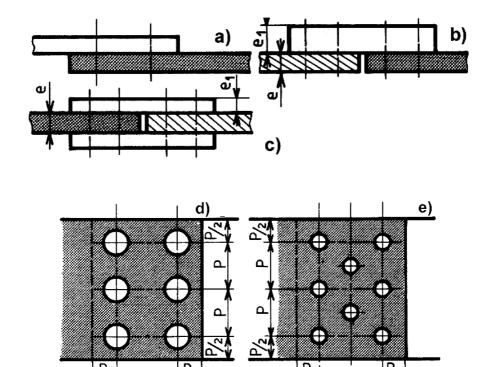


Fig. 1-2

Le diamètre des trous peut être de **1,05** à **1,1 d** (d = diamètre du rivet) lorsque le trou est obtenu par poinçonnage on doit ôter la zone écrouie lors d'un rivetage fortement sollicité.

Le diamètre des rivets peut être choisi entre les deux formules : $d = \sqrt{50e} - 4$ ou d = 45e/(15 + e) .

La distance entre deux rivets consécutifs d'une ligne (le pas **P**) est :

Rivure courante : P = 3 à 10 d;

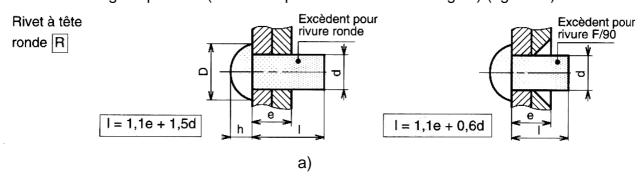
- Rivure étanche : P = 2,5 à 4 d.

La distance de la tôle à l'axe du premier rivet est égale à P/2.

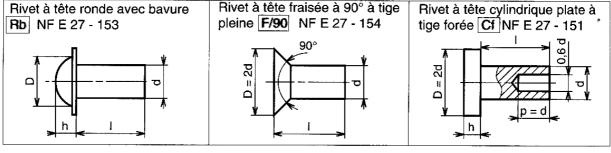
La longueur de rivets est normalisée. Elle doit être calculée à partir des formules cidessous et après choisie dans le tableau :

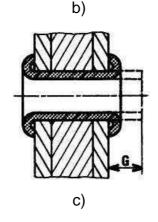
- Rivure apparente : L = 1,1.e + kd ; k = 1,5 à 1,7 ;

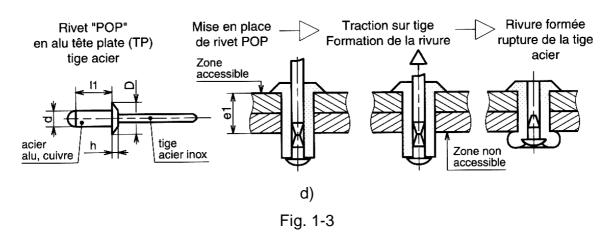
Rivure fraisée : L = 1,1.e + k₁ ; k₁ = 0,6 à 0,7 ;


e = épaisseur de la tôle ; d = diamètre du rivet


LONGUEUR, mm											
2	2,5	3	4	5	6	8	10	12			
14	16	20	25	30	35	40	45	50			
55	60	65	70	75	80	85	90	100			
110	120	130	140	150	160	170	180	190			
200	225	250	275	Puis de 25 en 25							


1.1.2. Types de rivetage


Les types de rivetage sont déterminés selon le moyen de pose :


- Rivetage avec rivure apparente (tête ronde, goutte de suif, etc.) (fig. 1-3a);
- Rivetage avec rivure fraisée (fig. 1-3b) :
 - dans tôle épaisse ;
 - dans tôle mince.
- Rivetage avec rivet creux (automobile, aéronautique): normalisé NF L 21-250c et R 93-507 (fig. 1-3c);
- Rivetages spéciaux (rivets à expansion ou rivets aveugles) (fig. 1-3d).

On peut réaliser des rivures étanches par joint intercalé si l'épaisseur de la tôle **e** < 5 mm ou par matage des bords (fig. 1-4).

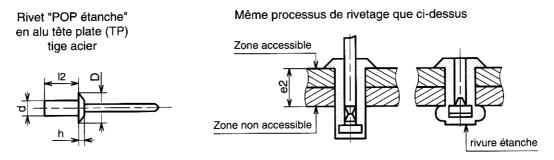
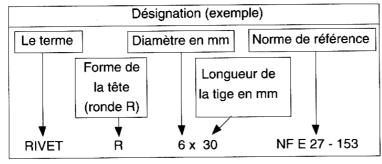



Fig. 1-4

1.1.3. Représentation symbolique et désignation

Repr	ésentations symb	oliques des rivets l	NF E 04 - 014			
Différents cas de	Rivets pos	és à l'atelier	Rivets posés sur chantier			
rivetage	en vue de dessus (1)	en vue de face	en vue de dessus ⁽¹⁾	en vue de face		
Tête Ronde						
Tête ou rivure fraisée	+					
Tête fraisée Rivure fraisée	*					

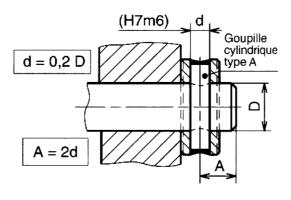
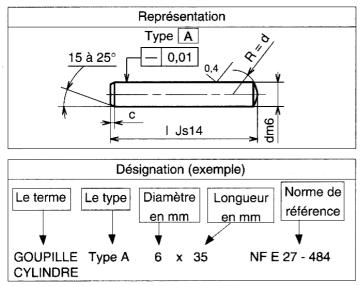
Principales dimensions										
d	3	4	5	6	8	10	12			
D	5,5	7	9	11	14	17	21			
h	2,5	3	4	4,5	5,5	7	8			
1	- 30 -	32 - 3	35 - 3	10 - 1 38 - 40) - 85 -	- 45 -	50 - 5				

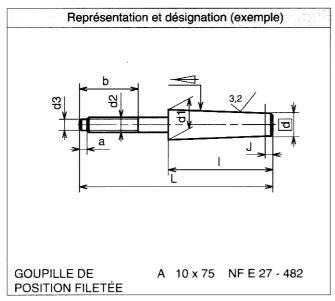
1.2. Goupillage

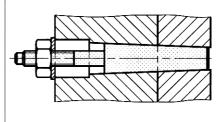
Le goupillage est une solution constructive permettant (fig. 1-5):

- d'immobiliser une pièce par rapport à une autre ;
- de positionner une pièce par rapport à une autre ;
- de positionner précisément deux pièces ;
- de transmettre un mouvement (rotation ou translation);
- d'assure la sécurité d'un mécanisme dans le cas d'une surcharge (cisaillement de la goupille).

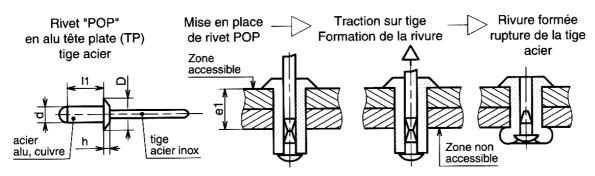
Module 18 : Démontage et montage des systèmes mécaniques

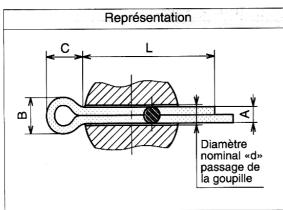



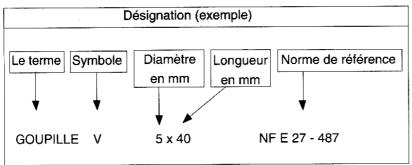

Fig. 1-5


1.2.1. Goupilles cylindriques non trempées

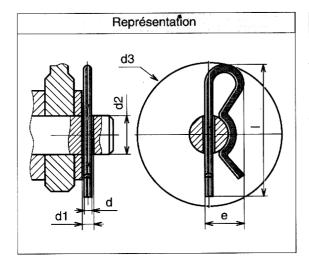
	Principales dimensions										
Тур	е	Α	В		С						
Toléra sur		m6	m6 h8		h11						
اما	_		Long	gueu	rl						
d	С	mini	maxi	Ιd	isponible						
2	0,35	6	25								
2,5	0,4	6	25	20	γ						
3	0,5	8	30	8	, 80 kg						
4	0,63	8	45	4	de 25 à 80 de 25 à 80 0 au-delà d						
5	0,8	10	50] =	de ;						
6	1,2	12	60] 5	de 5 en 5, de 25 à 80 de 10 en 10 au-delà de 80						
8	1,6	14	80	9	5 el 5 el 10 e						
10	2	20	100	۳	g e e						


1.2.2. Goupilles de positionnement coniques filetées



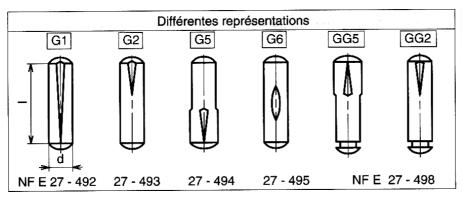

d	d1	d2	d3	L	L	а	b
6	6,6	M4	2,5	50	30	1,5	15
8	8,8	М6	4,5	60	40	2	15
10	10,9	М8	6	75	45	3	20
12	13,1	M10	7	100	55	3	30

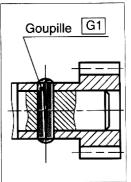
1.2.3. Goupilles cylindriques fendues

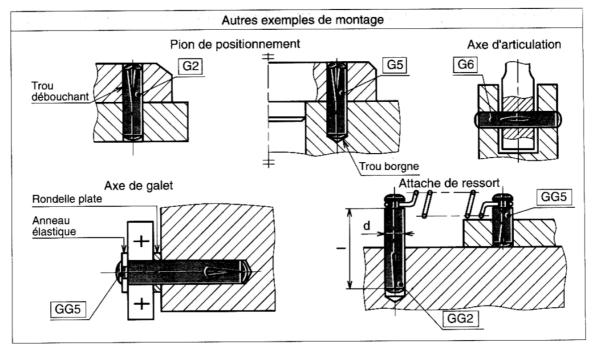

	6.45 . - 7.5- 1.5	Pi	rincipa	ales c	limen	sions	
		4			7 A	Longu	ieur L
d	mini	maxi	В	С	mini	maxi	L disponibles
1,6	1,3	1,4	3,6	4	8	32	25, , 63,
2	1,7	1,8	4,6	5	10	40	22, , 56 125
2,5	2,1	2,3	5,8	6,4	12	50	20, 5, 50 112,
3,2	2,7	2,9	7,4	8	14	63	, 18, 0, 45 10, 1
4	3,5	3,7	9,2	10	18	80	2, 14, 36, 4(90, 1
5	4,4	4,6	11,8	12,6	22	100	0, 12 32, 3 80, 9
6,3	5,7	5,9	15	16	32	125	8, 16 28, 3 71, 8

Observations

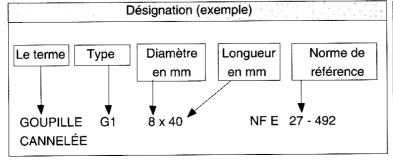
- Solution constructive essentiellement utilisée comme frein d'écrou HK
- Après mise en place de la goupille, les extrêmités des branches sont écartées puis rabattues.
- Attention ! pas de réutilisation après démontage


1.2.4. Goupilles épingle (SAFIL S.A)

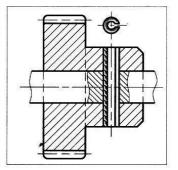


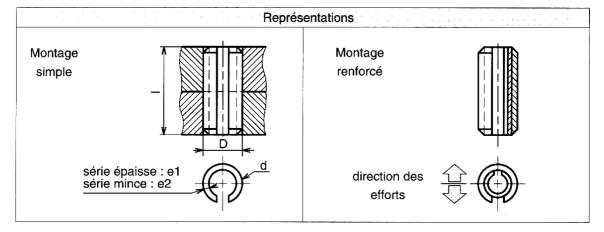

Principales dimensions											
1,2	1,5	1,8	2	2,4	2,7	3	3,5	4			
1,4	1,7	2	2,2	2,6	3	3,4	4	4,5			
5-8	6-10	7-12	9-14	10-16	11-18	12-20	13-22	15-25			
35	42	48	62	70	78	84	96	124			
31,5	37	46	53	60	70	76	84	115			
9,5	10,5	12	15	17	20	21,5	24	27,5			
	1,4 5-8 35 31,5	1,2 1,5 1,4 1,7 5-8 6-10 35 42 31,5 37	1,2 1,5 1,8 1,4 1,7 2 5-8 6-10 7-12 35 42 48 31,5 37 46	1,2 1,5 1,8 2 1,4 1,7 2 2,2 5-8 6-10 7-12 9-14 35 42 48 62 31,5 37 46 53	1,2 1,5 1,8 2 2,4 1,4 1,7 2 2,2 2,6 5-8 6-10 7-12 9-14 10-16 35 42 48 62 70 31,5 37 46 53 60	1,2 1,5 1,8 2 2,4 2,7 1,4 1,7 2 2,2 2,6 3 5-8 6-10 7-12 9-14 10-16 11-18 35 42 48 62 70 78 31,5 37 46 53 60 70	1,2 1,5 1,8 2 2,4 2,7 3 1,4 1,7 2 2,2 2,6 3 3,4 5-8 6-10 7-12 9-14 10-16 11-18 12-20 35 42 48 62 70 78 84 31,5 37 46 53 60 70 76	1,2 1,5 1,8 2 2,4 2,7 3 3,5 1,4 1,7 2 2,2 2,6 3 3,4 4 5-8 6-10 7-12 9-14 10-16 11-18 12-20 13-22 35 42 48 62 70 78 84 96 31,5 37 46 53 60 70 76 84			

 Solution constructive très conseillée pour des montages et démontages fréquents sans outillage spécifique.

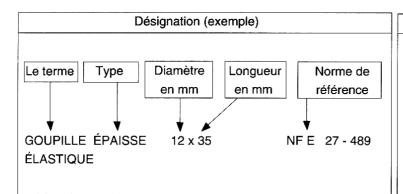

1.2.5. Goupilles cannelées

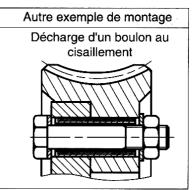
Principales dimensions											
Diamètres d standards	Longueurs I c	disponible	2d 10 d								
0,5 - 1 - 1,2 - 2 - 3 - 4 - 5 - 6 - 8 - 10 - 12 -	de 1 en 1 de 6 à 10 mm	de 5 en 5 de	45 à 100 mm								
14 - 16 - 20 - 25	de 2 en 2 de 12 à 40 mm	de 10 en 10 d	le 100 à 160 mm								


Observations


 Solution constructive efficace et économique ne nécessitant pas des ajustements trop précis entre la goupille et l'alésage (H9 à H11).
 De montage aisé ces goupilles permettent par leur variétés un grand nombre d'applications industrielles.

1.2.6. Goupilles élastiques (MECANINDUS)


Observations


- Ces goupilles sont obtenues par enroulement d'une bande d'acier très
- Cette solution constructive présente de nombreux avantages :
 - . montage et démontage aisés
 - . faible coût
 - . bonne fiabilité dans la transmission des efforts
 - . bonne résistance aux vibrations.

						Princ	ipales	dimens	ions		131.11		
D		and and the crops		e in a consideration of the co			Paramakan Virginia (1984)					7 4 7	
H12	2	2,5	3	3,5	4	4,5	5	6	7	8	9	10	I disponible
d	2,2	2,75	3,3	3,8	4,35	4,85	5,35	6,4	7,45	8,45	9,5	10,5	5 - 6 - 8 - 10 12 - 15 - 18 - 20 - 22 - 25 -
e1	0,4	0,5	0,6	0,6	0,8	1	1	1,2	1,2	1,5	2	2	28 - 30 - 35 - 40 - 45 - 50 -
e2	0,2	0,25	0,3	0,3	0,4	0,4	0,5	0,6	0,6	0,75	1	1	55 - 60 - 70- 80 - 90 - 100 -
	5 à	5 à	6 à	6 à	8à	8 à	10 à	10 à	10 à	12 à	12 à	15 à	110 - 120 -
'	40	40	50	50	60	70	80	80	100	120	120	140	130 - 140

1.3. Clavetage

Le clavetage est une solution constructive, simple et économique, permettant la liaison par obstacle d'un moyeu sur un arbre (fig. 1-6). Il a pour but d'entraîner en rotation le moyeu (poulie, engrenage, etc.) et l'arbre. La liaison couramment obtenue est fixe et démontable. Le couple transmissible est supérieur à celui obtenu par goupillage mais reste modéré.

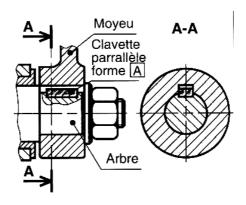
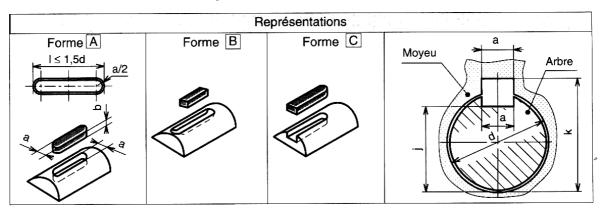
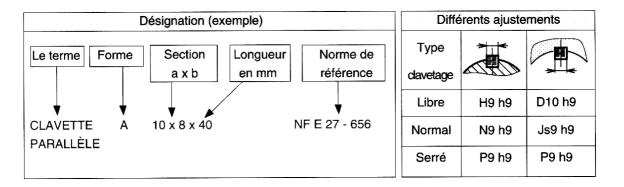




Fig. 1-6

1.3.1. Clavettes parallèles

		1					Princip	ales	dimens	sion	S						
	CI	avette		Arbre			Moye	a i		Cla	vette	Α	rbre		Моу	eu	
d	а	b 6 h9	а			a	k		d		b 6 h9	а	ries Je		a D10,JS9	k	
	h9	b >6 h11	H9,N9 P9	valeur	Tol.	D10,JS9 P9	valeur	Tol.			b >6 h11	H9,N9 P9	valeur	Tol.	P9	valeur	Tol.
8 à 10	3	3	3	d - 1,8	+ 0,1	3	d + 1,4	0	38 à 4	12	8	12	d- 5		12	d +3,3	
10 à 12	4	4	4	d - 2,5	0,1	4	d + 1,8	-	44 à 50	14	9	14	d - 5,5		14	d +3,8	
12 à 17	5	5	5	d - 3		5	d + 2,3		50 à 58	16	10	16	d-6	+ 0,2		d +4,3	
17 à 22	6	6	6	d - 3,5		6	d + 2,8		58 à 65	18	11	18	d - 7	0	18	d +4,4	-0,2
22 à 30	8	7	8	d - 4	+ 0,2	8	d + 3,3		65 à 75		12	20	d - 7,5		20	d +4,9	
30 à 38	10	8	10	d - 5	0	10	d + 3,3	- 0,2	75 à 85	22	14	22	d-9		22	d +5,4	

1.3.2. Clavettes disques

L'utilisation de la clavette disque est limitée, car la rainure de clavetage profonde (plus difficile à usiner) affaiblit la résistance de l'arbre (fig. 1-7). Le couple transmissible est faible.

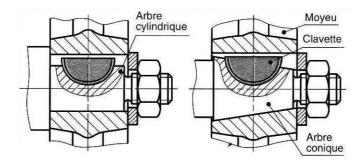
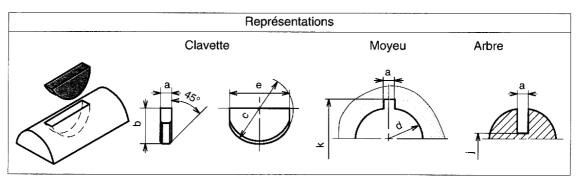
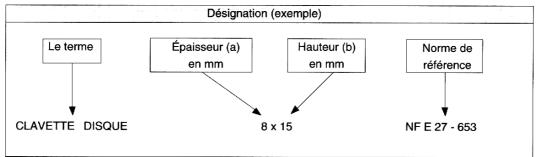
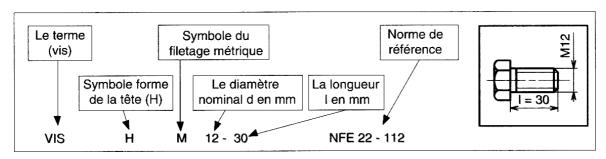
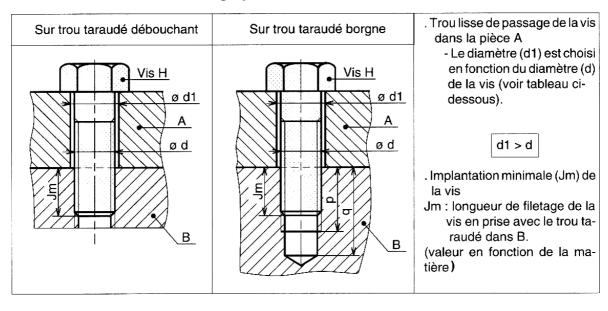
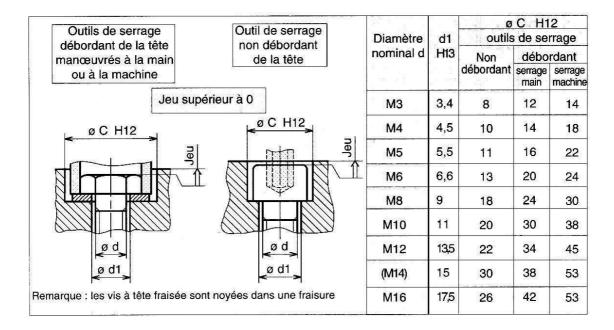




Fig. 1-7



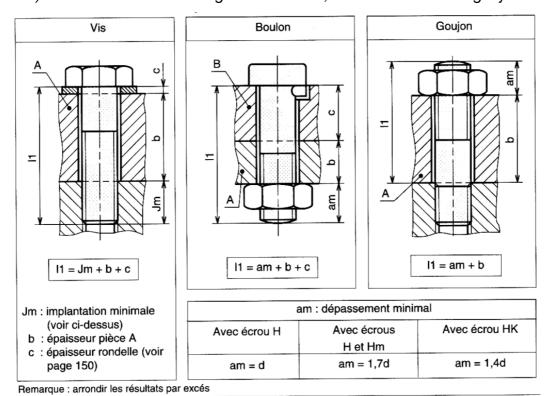

						P	rincipales	dimen	sions	S					
		Clave	tte	F	\rbre	N	loyeu			Clave	tte	A	rbre	Moyeu	
а	b	С	е	а	j	а	k	а	b	С	е	а	j ,	а	k
h9	h11	h11	h11	P9	h11	E9	H13	h9	h11	h11	h11	P9	h11	E9	H13
	5	13	11,5		d - 3,5		d + 1,8		10	25	23		d - 7,5		d + 2,8
4	6,5	16	15	4	d - 5	4	d + 1,8	6	11	28	25,5	6	d - 8,5	6	d + 2,8
	7,5	19	17,5		d - 6		d + 1,8		13	32	30		d - 10,5		d + 2,8
	6,5	16	15		d - 4,5		d + 2,3		11	28	25,5		d - 8		d + 3,3
5	7,5	19	17,5	5	d - 5,5	5	d + 2,3		13	32	30		d - 10		d + 3,3
	9	22	20,5		d - 7		d + 2,3	8	15	38	35	8	d - 12	8	d + 3,3
6	9	22	20,5	6	d - 6,5	6	d + 2,8		16	45	41		d - 13		d + 3,3

1.4. Assemblage par éléments filetés


1.4.1. Désignation générale des vis

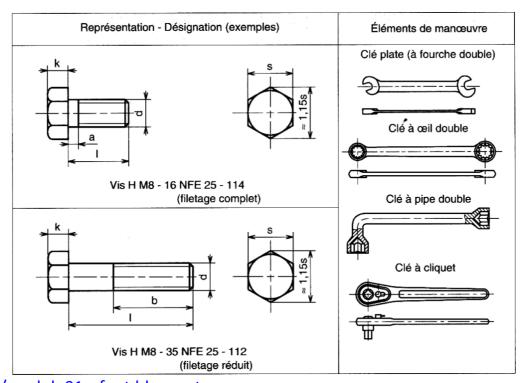
1.4.2. Assemblage par vis avec tête débordante NF E 27-025

1.4.3. Assemblage avec tête de vis noyée dans un lamage

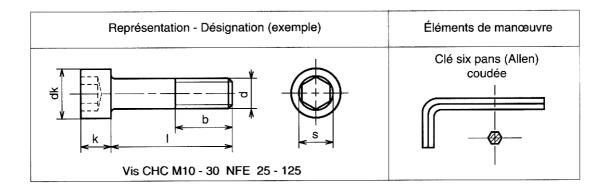

1.4.4. Implantation d'une vis

a) Détermination de la profondeur de perçage q et de taraudage p

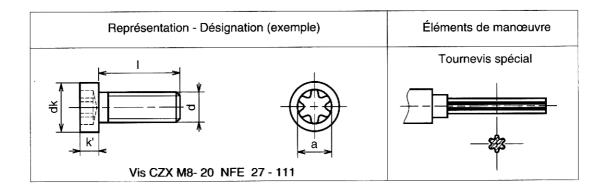
	d		q
777)	МЗ	Jm + 5	Jm + 2
	M4	Jm + 6	Jm + 2,5
	M5	Jm +8	Jm + 3
	М6	Jm + 10	Jm + 4
	М8	Jm + 12	Jm + 5
1	M10	Jm + 14	Jm + 6
	M12	Jm + 16	Jm + 7
Jm = d	2		
Jm = 1,5d	(M14)	Jm + 18	Jm + 8
Jm = 2d	M16	Jm + 20	Jm + 8
	Jm = 1,5d	M3 M4 M5 M6 M8 M10 M12 Jm = d Jm = 1,5d (M14)	M3 Jm + 5 M4 Jm + 6 M5 Jm + 8 M6 Jm + 10 M8 Jm + 12 M10 Jm + 14 M12 Jm + 16 Jm = d Jm = 1,5d (M14) Jm + 18


Module 18 : Démontage et montage des systèmes mécaniques

b) Détermination de la longueur d'une vis, d'un boulon et d'un goujon

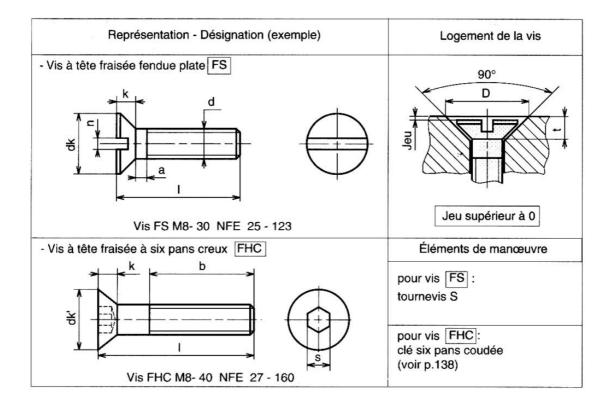

1.4.5. Différents types de vis d'assemblage

a) Vis à tête hexagonale **H**



		3700F			Principales dimensions
d	pas (gros)	k	s	a	i - I/b I : longueur sous tête b : longueur filetée
МЗ	0,5	2	5,5	1,5	6 - 8 - 10 - 12 - 14/12 - 16/12 - 18/12 - 20/12 - 22/12 - 25/12 - 28/12 - 30/12
M4	0,7	2,8	7	2,1	8 - 10 - 12 - 16/14 - 18/14 - 20/14 - 22/14 - 25/14 - 28/14 - 30/14 - 35/14 - 40/14
M5	0,8	3,5	8	2,4	10 - 12 - 16 - 18/16 - 20/16 - 22/16 - 25/16 - 28/16 - 30/16 - 35/16 - 40/16 - 45/16 - 50/16
М6	1	4	10	3	12 - 16 - 20/18 - 22/18 - 25/18 - 28/18 - 30/18 - 35/18 - 40/18 - 45/18 - 50/18 - 55/18 - 60/18
M8	1,25	5,3	13	3,75	16 - 20 - 25/22 - 28/22 - 30/22 - 35/22 - 40/22 - 45/22 - 50/22 - 60/22 - 65/22 - 70/22 - 75/22 - 80/22
M10	1,5	6,4	16	4,50	20 - 25 - 30/26 - 35/26 - 40/26 - 45/26 - 50/26 - 55/26 - 60/26 - 65/26 - 70/26 - 75/26 - 80/26 - 85/26120/26
M12	1,75	7,5	18	5,25	25 - 30 - 25/30 - 40/30 - 45/30 - 50/30 - 55/30 - 60/30 - 65/30 - 70/30 120/30
(M14)	2	8,8	21	6	25 - 30 - 40/34 - 45/34 - 50/34 - 55/34 - 60/34 - 65/34 - 70/34120/34
M16	2	10	24	6	25 - 30 - 35 - 40 - 45/38 - 50/38 - 55/38 - 60/38 - 65/38 - 70/38120/38 - 150/44200/44

b) Vis à tête cylindrique à six pans creux CHC



c) Vis à tête cylindrique basse à six lobes internes CZX

							Principales dim	ensions							
d	pas	dk	k	s	k'	a	CHC	I - I/b	l : longueur sous tête						
	(gros)						CZX	I - I/b	b : longueur filetée						
МЗ	0,5	5,5	3	2,5	2	2,8	5 - 6 - 8 - 10 - 12 - 10	6 - 20 - 25 - 25/18	- 30/18						
							6 - 8 - 10 - 12 - 16 - 3	20 - 25 - 30							
M4	0,7	7	4	3	2,8	3.95	6 - 8 - 10 - 12 - 16 - 3	20 - 25 - 30/20 - 3	5/20 - 40/20						
	,.				, -, -		8 - 10 - 12 - 16 - 20 -	25 - 30 - 35 - 40							
M5	0.8	8,5	5	4	3,5	3,95	8 - 10 - 12 - 16 - 20 -	25 - 30/22 - 35/2	250/22						
CIVI	0,6	0,5	,	"	3,3	3,93	8 - 10 - 12 - 16 - 20 -	25 - 30 - 35 - 40	- 45 - 50						
			_	_			10 - 12 - 16 - 20 - 25 - 30 - 35/24 - 40/2460/24								
M6	1	10	6	5	4	5,80	10 - 12 - 16 - 20 - 25	- 30 - 35 - 40 - 45	5 - 50 - 55 - 60						
							12 - 16 - 20 - 25 - 30	- 35 - 40/28 - 45/	2880/28						
М8	1,25	13	8	6	5	6,75	12 - 16 - 20 - 25 - 30	- 35 - 4060 - 6	5/40 - 80/40						
							16 - 20 - 25 - 30 - 35	- 40 - 45/32 - 50/	32100/32						
M10	1,5	16	10	8	6	11,35	16 - 20 - 25 - 30 - 35	- 40 - 4565 - 7	0/50100/50						
							20 - 25 - 30 - 35 - 40	- 45 - 50/3612	20/36						
M12	1,75	18	12	10	7	11,35	20 - 25 - 30 - 35 - 40	- 4565 - 70/5	50120/50						
							25 - 30 - 35 - 40 - 45	- 50 - 55 - 60/40.	120/40						
(M14)	2	21	14	12											
							25 - 30 - 35 - 40 - 45	- 50 - 55 - 60/44.	120/44						
M16	2	24	16	14											

d) Vis à tête fraisée F

							Princip	ales d	imensions
d	pas (gros)	dk	dk'	k	n	а	t	D	I - I/b I : longueur totale b : longueur filetée
МЗ	0,5	6,3	5,5	1,65	0,8	1	1,65	6,8	8 - 10 - 12 - 16 - 20 - 25/18 - 30/18
M4	0,7	9,4	8,4	2,7	1	1,4	2,70	9,8	8 - 10 - 12 - 16 - 20 - 25 - 30/22 - 35/22 - 40/22
M5	0,8	10,4	9,3	2,7	1,3	1,6	2,70	10,9	8 - 10 - 12 - 16 - 20 - 25 - 30/22 - 35/22 - 40/22 - 50/ 22
М6	1	12,6	11,3	3,3	1,5	2	3,30	13,2	10 - 12 - 16 - 20 - 25 - 30 - 35/24 - 40/24 - 50/24 - 60/ 24
M8	1,25	17,3	15,8	4,65	2	2,5	4,65	18,1	10 - 12 - 16 - 20 - 25 - 30 - 35 - 40/28 - 50/28 - 60/28 - 70/28
M10	1,5	20	18,3	5	2,5	3	5	21	12 - 16 - 20 - 25 - 30 - 35 - 40 - 50/32 - 60/32 - 70/32 - 80/32
M12	1,75		22,5	6			6	25,2	20 - 25 - 30 - 35 - 40 - 50 - 60/36 - 70/36 - 80/36 90/36 - 100/36
(M14)	2		26	7			7		25 - 30 - 35 - 40 - 45 - 50 - 60/40120/40
M16	2		30	8			8	33,6	35 - 40 - 50 - 60 - 70/44 - 80/44 - 90/44 - 100/44 110/44 - 120/44

1.4.6. Goujons

a) Implantation (fig. 1-8)



Fig. 1-8

b) Représentation (fig. 1-9)

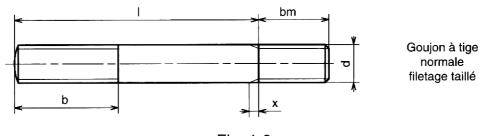
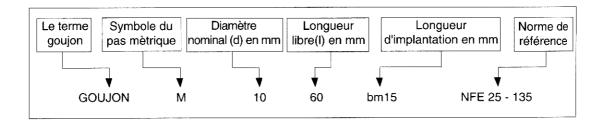



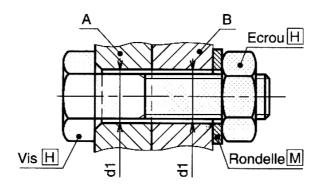
Fig. 1-9

Remarque : II existe également **des** goujons à filetage roulé (le diamètre **de la** partie lisse un peu faible).

							Principales dime	ensions	
d	pas (gros)	dk	k	s	k'	а	CHC CZX	I - I/b I - I/b	l : longueur sous tête b : longueur filetée
МЗ	0,5	5,5	3	2,5	2	2,8	5 - 6 - 8 - 10 - 12 - 16 6 - 8 - 10 - 12 - 16 - 2		3 - 30/18
M4	0,7	7	4	3	2,8	3,95	6 - 8 - 10 - 12 - 16 - 2 8 - 10 - 12 - 16 - 20 -	20 - 25 - 30/20 - 3	5/20 - 40/20
M5	0,8	8,5	5	4	3,5	3,95	8 - 10 - 12 - 16 - 20 - 8 - 10 - 12 - 16 - 20 -		
M6	1	10	6	5	4	5,80	10 - 12 - 16 - 20 - 25 10 - 12 - 16 - 20 - 25		
M8	1,25	13	8	6	5	6,75	12 - 16 - 20 - 25 - 30 12 - 16 - 20 - 25 - 30		
M10	1,5	16	10	8	6	11,35	16 - 20 - 25 - 30 - 35 16 - 20 - 25 - 30 - 35		
M12	1,75	18	12	10	7	11,35	20 - 25 - 30 - 35 - 40 20 - 25 - 30 - 35 - 40		
(M14)	2	21	14	12			25 - 30 - 35 - 40 - 45	- 50 - 55 - 60/40	120/40
M16	2	24	16	14			25 - 30 - 35 - 40 - 45	- 50 - 55 - 60/44	120/44

c) Désignation

1.4.7. Boulons


a) Définition

Un boulon est constitué :

- d'une vis portant le filetage ;

- d'un écrou permettant le serrage.

Un boulon assure une liaison fixe démontable entre les pièces A et B (fig. 1-10). Les boulons sont définis à partir de la forme de la tête de vis.

d1 : diamètre passage de vis

Fig. 1-10

- b) Différentes formes de boulons
- Boulon à tête hexagonale (fig. 1-11) : C'est le boulon le plus utilisé en construction mécanique. L'arrêt en rotation (d'axe **Z**) de la tête **H** est facilement et économiquement réalisé : par une clé (s'il existe de l'accessibilité), par un obstacle comme la face **F** ou par une plaquette arrêtoir.

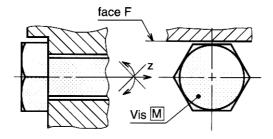


Fig. 1-11

- Boulon à tête carrée : Boulon souvent utilisé dans les ablocages de pièces sur machines outils (fig. 1-12a). L'arrêt en rotation (d'axe **Z**) de la tête **Q** est réalisé par l'intermédiaire de la rainure en **T** de la table (fig. 1-12b).

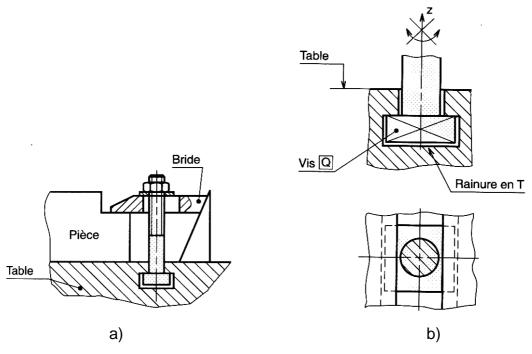
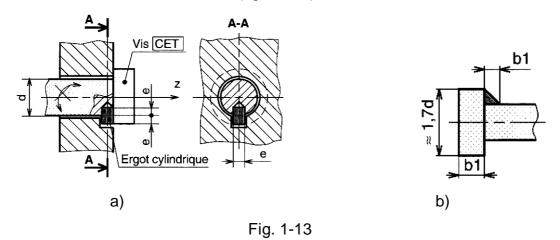



Fig. 1-12

Boulon à tête cylindrique : L'arrêt en rotation (d'axe \mathbb{Z}) est obtenu soit par un ergot cylindrique rapporté avec e = 2 pas (fig. 1-13a), soit par un ergot brut (symbole CE) avec $b_1 = d/2$ (fig. 1-13b).

Boulon à tête fraisée: L'arrêt en rotation (Rz) est également obtenu par un ergot cylindrique rapporté F 90/ET ou par un ergot brut F 90/E avec b₃ = d/2 (fig. 1-14).

Module 18 : Démontage et montage des systèmes mécaniques

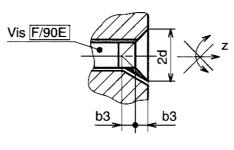
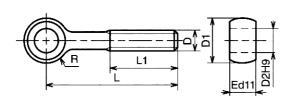
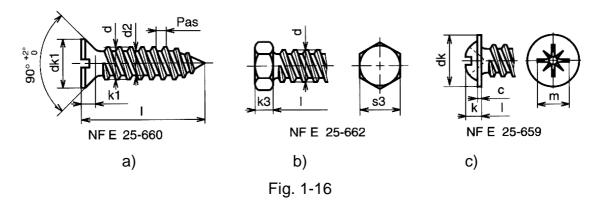



Fig. 1-14

 Boulon à œil ou vis d'articulation d'après NORELEM (Réf. n/m 718): Les principales caractéristiques sont présentées sur la fig. 1-15a. Il est utilisé pour assurer une possibilité de rotation limitée dans un plan (fig. 1-15b).

Matière : XC 38 bruni




Fig. 1-15

					Princ	ipales	dimens	ions					
	D	M5	M5	M6	М6	M8	M8	M10	M10	M12	M12	M16	M20
relatives à la fixation	L	50	75	50	75	50	75	75	100	75	120	130	140
	Lf	22	22	24	24	28	28	45	45	49	49	57	65
Agés .	D1	12	12	14	14	18	18	20	20	25	25	32	40
relatives à la	D2H9	5	5	6	6	8	8	10	10	12	12	16	18
construction	Ed11	6	6	7	7	9	9	12	12	14	14	17	22
	R	2,5	2,5	4	4	4	4	4	4	6	6	6	6

1.4.8. Vis autotaraudeuses pour tôle

- a) Formes des têtes et des empreintes
 - Tête fraisée plate **F** à fente **S** (fig. 1-16a) : symbole **FS**; existe avec bombé **FB**, avec empreinte 6 lobes internes **X** ou cruciforme **Z**;

- Tête hexagonale (fig. 1-16b): symbole *H*; existe avec tête hexagonale fendue *HS*;
- Tête ronde large *RL* à empreinte cruciforme *Z* (fig. 1-16c) : symbole *RLZ*; existe avec empreinte 6 lobes internes *X*.

b) Formes des extrémités

- A bout pointu (fig. 1-17a): symbole C; utilisées pour les tôles minces
 e < 1,5 mm;
- A bout plat (fig. 1-17b) : symbole **F**; utilisées pour les tôles plus épaisses, les matières plastiques et les métaux tendre.

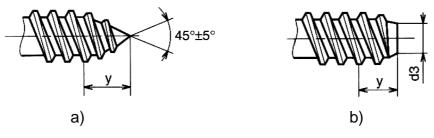
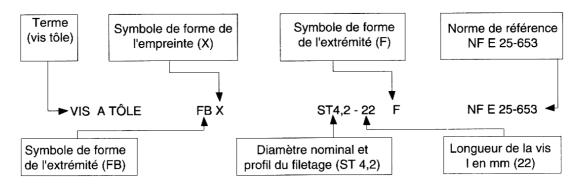
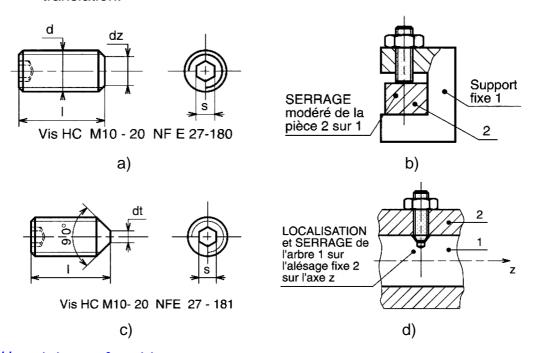
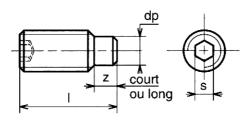



Fig. 1-17

c) Désignation (exemple)


d) Principales dimensions

d (h13)	Pas	d2 (maxi)	dk1	k1	k3	s3	dk	k	C	m	Empreinte Z		
ST 2,2	0,8	1,63	4,4	1,1	1,6	3,2						4,5	16
ST 2,9	1	2,18	6,3	1,7	2,3	5	6 à 6,6	1,4 à 1,7	0,7	2,6	1	6,5	19
ST 3,5	1,3	2,64	8,2	2,35	2,6	5,5	7,5 8	2,1 2,4	0,9	4	2	9,5	25
ST 4,2	1,4	3,1	9,4	2,6	3	7	9 9,5	2,3 2,6	1	4,1	2	9,5	32
ST 4,8	1,6	3,58	10,4	2,8	3,8	8	10,5 11	2,5 2,9	1	4,5	2	9,5	32
ST 5,5	1,8	4,17	11,5	3	4,1	8	12,5 13	2,7 3,2	1,2	6	3	13	32
ST 6,3	1,8	4,88	12,6	3,15	4,7	10	13 13,5	3,1 3,7	1,4	6,7	3	13	32


1.4.9. Différentes vis de pression

Ce sont des vis spéciales sans tête à empreinte 6 pans creux, symbole HC.

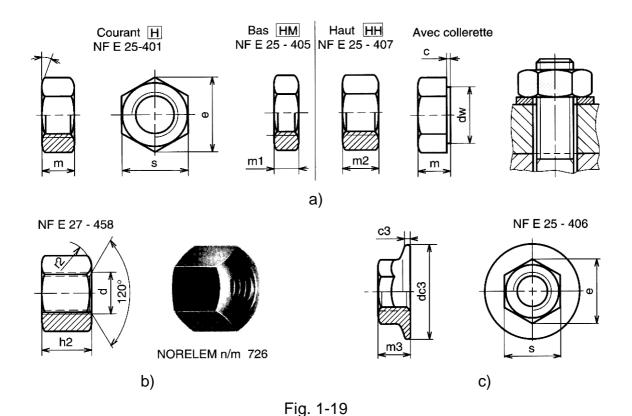
- a) Vis sans tête à bout plat (fig. 1-18a) : elles sont utilisées pour serrage modéré (fig. 1-18b) ;
- b) Vis sans tête à bout conique (fig. 1-18c) : elles sont utilisées pour serrage des arbres (fig. 1-18d);
- c) Vis sans tête à bout téton (fig. 1-18e) : elles sont utilisées pour arrêt en translation.

Module 18 : Démontage et montage des systèmes mécaniques

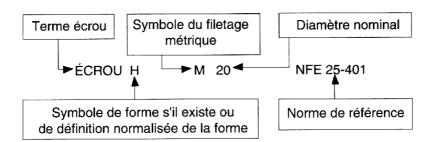
Vis HC M10- 20 NFE 27 - 182

e)

Fig. 1-18

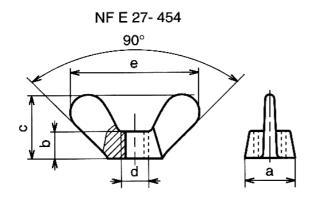

<u>Remarque</u>: Il existe aussi des vis de pression avec tête: hexagonale **HZ**, carrée ordinaire **QZ** et cylindrique étoile **CZ**.

d	pas	s	dz	dt	dp	Z C	ourt	z l	ong	
	(gros)	3	maxi	· -	maxi	mini	maxi	mini	maxi	
МЗ	0,5	1,5	2	0	2	0,75	1	1,5	1,75	3 - 4 - 5 - 6 - 8 - 10 - 12 - 16
M4	0,7	2	2,5	0	2,5	1	1,25	2	2,25	4 - 5 - 6 - 8 - 10 - 12 - 16 - 20
M5	0,8	2,5	3,5	0	3,5	1,25	1,50	2,5	2,75	5 - 6 - 8 - 10 - 12 - 16 - 20 - 25
М6	1	3	4	1,5	4	1,5	1,75	3	3,25	6 - 8 - 10 - 12 - 16 - 20 - 25 - 30
M8	1,25	4	5,5	2	5,5	2	2,25	4	4,3	8 - 10 - 12 - 16 - 20 - 25 - 30 - 35 - 40
M10	1,5	5	7	2,5	7	2,5	2,75	5	5,3	10 - 12 - 16 - 20 - 25 - 30 - 35 - 40 - 45 - 50
M12	1,75	6	8,5	3	8,5	3	3,25	6	6,3	12 - 16 - 20 - 25 - 30 - 35 - 40 - 45 - 50 - 55 - 60


1.5. Ecrous et rondelles

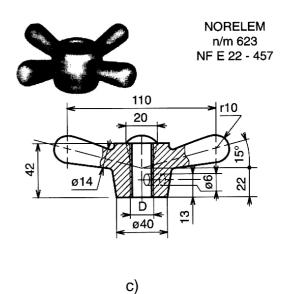
1.5.1. Principaux écrous manœuvrés par clés

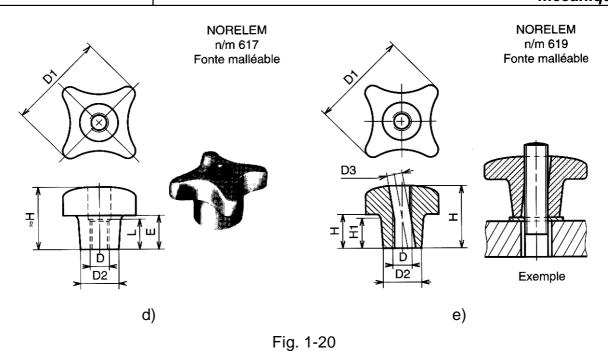
- a) Ecrous hexagonaux H (fig. 1-19a): Ce sont les écrous les plus utilisés
- b) Ecrou à portée sphérique **NORELEM** n/m 726 (fig. 1-19b) : ils s'utilisent avec des rondelles sphériques dans le cas de surfaces d'appui non perpendiculaires à l'axe.
- c) Ecrou à embase *HE* (fig. 1-19c) : l'embase de ces écrous évite l'emploi de rondelles.



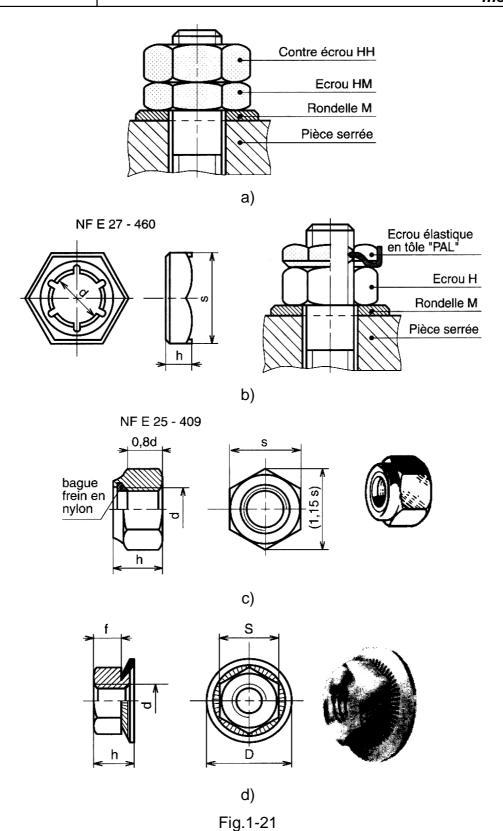
1 1 1 1 1					Princ	ipales	dimer	nsions					
d	Pas	m	m1	m2	C	dw	s	е	h2	r2	m3	dc3	сЗ
МЗ	0,50	2,4	1,8		0,4	4,6	5,5	6					
M4	0,70	3,2	2,2		0,4	5,9	7	7,6	6	8			
М5	0,80	4,7	2,7	5,1	0,5	6,9	8	8,8			5	12	1
M6	1	5,2	3,2	5,7	0,5	8,9	10	11,1	8	14	6	14	1,1
M8	1,25	6,8	4	7,5	0,6	11,6	13	14,4	11	14	8	18	1,2
M10	1,50	8,4	5	9,3	0,6	14,6	16	17,8	13	22	10	22	1,5
M12	1,75	10,8	6	12	0,6	16,6	18	20	15	22	12	26	1,8
(M14)	2	12,8	7	14,1	0,6	19,6	21	23,35	14,1	30	14	30	2,1
M16	2	14.8	8	16.4	0.8	22.5	24	26.8	21	30	16	34	2.4

1.5.2. Principaux écrous manœuvrés à la main

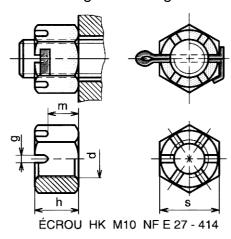

- a) Ecrou à oreilles ONF E 27-454 (fig. 1-20a);
- b) Ecrou moleté **NORELEM** n/m 601 NF E 27-455 (fig. 1-20b) ;
- c) Ecrou à quatre bras **NORELEM** n/m 623 NF E 22-457 (fig. 1-20c) ;
- d) Ecrou croisillon **NORELEM** n/m 617 Fonte malléable (fig. 1-20d);
- e) Ecrou croisillon à serrage rapide **NORELEM** n/m 619 Fonte malléable (fig. 1-20e).


d ,	a	b	C	е
			:	
МЗ	8	4	12	22
M4	9	5	13	26
M5	11	6	15	30
М6	13	8	18	35
M8	15,5	10	22	42
M10	18	11	25	48
M12	21	12	28	54

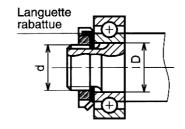
a)

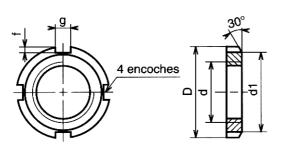

Module 18 : Démontage et montage des systèmes mécaniques

1.5.3. Freinage à sécurité relative à l'aide d'écrous


- a) Avec écrou HM et contre-écrou HH (fig. 1-21a): C'est une solution constructive simple mais peu utilisée car le freinage n'est pas sûr et l'encombrement est important.
- b) Avec écrou élastique en tôle « PAL » NF E 27-460 (fig. 1-21b) : Ce freinage peut être exécuté par écrou seul ou comme contre-écrou. Les efforts supportés sont faibles.
- c) Avec écrou auto-freiné *H FR* NF E 25-409 (fig. 1-21c) : Le freinage est obtenu à l'aide d'une bague en nylon (polyamide) sertie dans l'écrou. C'est une solution constructive bien adaptée en cas d'existence de vibrations.
- d) Avec écrou à rondelle incorporée type « TWOLOCK » (fig. 1-21d) : Le freinage est obtenu par déformation élastique de la rondelle et par la denture de celle-ci qui s'oppose au dévissage de l'écrou. C'est une solution constructive permettant une grande portance (∅ D important) et une facilité de mise en œuvre (rondelle liée à l'écrou).

Module 18 : Démontage et montage des systèmes mécaniques


1.5.4. Freinage à sécurité absolue à l'aide d'écrous et d'accessoires formant obstacle


- a) Avec écrou HK et goupille fendue V (fig. 1-22a) : Le freinage est obtenu par une goupille V traversant le créneau de l'écrou et la vis préalablement percée. A chaque démontage la goupille doit être changée.
- b) Avec écrou à encoches et rondelles freins à languettes (fig. 1-22b) : Ce sont les languettes de la rondelle frein qui assurent le freinage absolu. La languette intérieure est logée dans la rainure de l'arbre (dimension J et H fonction de f et M). Une languette extérieure est rabattue dans une encoche de l'écrou. C'est une solution constructive très utilisée pour le serrage de la bague intérieure d'un roulement.

d	M4	M5	М6	M8	M10	M12	(M14)	M16
h	5,6	6,6	8,1	10,3	12,8	16	16	20
m	3,2	4	5	6,5	8	10	11	13
g	1,2	1,4	2	2,5	2,8	3,5	3,5	4,5
s	7	8	10	13	16	18	21	24

a)

ÉCROU A ENCOCHES M 17 x 1 NF E 22 - 306

J	_

d	10	12	15	17	20	22	25	28	30
Pas	0,75	1	1	1	1	1	1,5	1,5	1,5
Djs13	18	22	25	28	32	34	38	42	45
hjs13	4	4	5	5	6	6	7	7	7
d1js13	13,5	17	21	24	26	28	32	36	38
fjs13	2	2	2	2	2	2	2	2	2
g H13	3	3	4	4	4	4	5	5	5

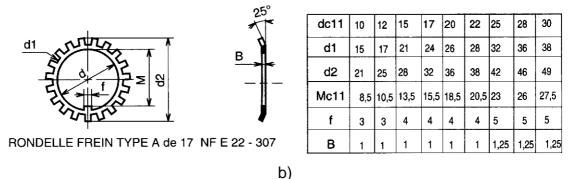
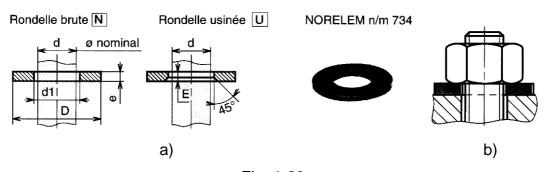
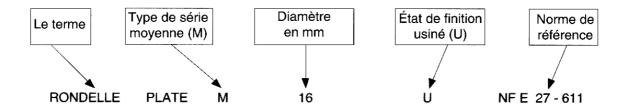
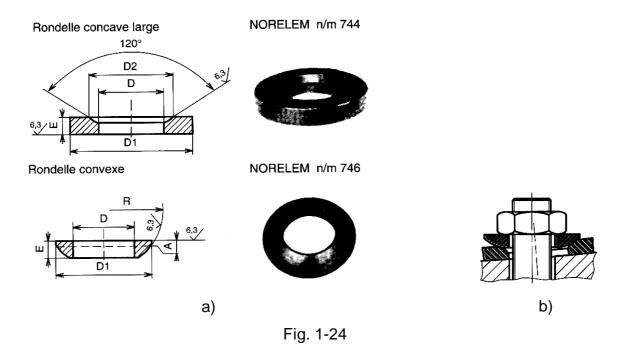


Fig. 1-22

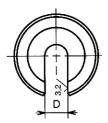
1.5.5. Rondelles d'appui et rondelles freins

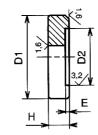
- a) Principales rondelles d'appui
 - Rondelles plates (fig.1-23a): Les rondelles d'appui plates permettent d'accroître la surface d'appui des écrous (fig. 1-23b). Elles constituent une interface entre l'écrou et la surface de la pièce qui atténue les risques de marquage de cette dernière. C'est une solution constructive très utilisée en construction mécanique.


Fig. 1-23

Les rondelles plates peuvent être désignées de façon suivante :


	, , , , , , , , , , , , , , , , , , ,			Р	rincipales	dimen	sions	i margore, and		- H L Y	
	-	Ronde	elles pré		Ro	ndelles bru	ites N				
		Dj 14		e			D :	± 2,5 %			
	Type de série			d1	j13		Тур	e de s	érie		
d	étroite	moyenne	large	H13	sie 3	Е	moyenne	large	très large	d1	е
	Z	M	L		j14		M	L	Ш	±2,5 %	±10%
					si e > 3	3 · · · · · · · · · · · · · · · · · · ·				**	
3	6	8	12	3,25	0,8	0,25	8	12	14	3,5	0,8
4	8	10	14	4,25	0,8	0,25	10	14	16	4,5	0,8
5	10	12	16	5,25	1	0,25	12	16	20	5,5	1
6	12	14	18	6,25	1,2	0,5	14	18	24	7	1,2
8	16	18	22	8,25	1,5	0,5	18	22	30	9	1,5
10	20	22	27	10,25	2	0,5	22	27	36	11	2
12	24	27	32	12,50	2,5	0,75	27	32	40	14	2,5
14	27	30	36	14,50	2,5	0,75	30	36	45	16	2,5
18	30	32	40	16,50	3	1	32	40	50	18	3


- Rondelles à portée sphérique NF E 27-615 (fig. 1-24a) : La rondelle concave peut être utilisée seule avec un écrou à portée sphérique ou avec une rondelle convexe (fig. 1-24b). Cette solution constructive, très utilisée au niveau des ablocages de pièce sur table et montage d'usinage, permet de compenser des défauts angulaires (3e max) de la surface de serrage assurant ainsi une meilleure fiabilité géométrique de la liaison.

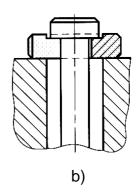
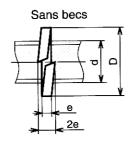
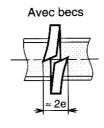
http://module01-ofppt.blogspot.com

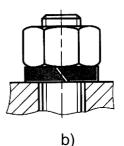
 Rondelles fendues amovibles (fig. 1-25a): Les rondelles fendues évitent de dévisser complètement l'écrou ou la vis pour extraire la pièce de montage (fig.1-25b). Cette possibilité réduit les temps manuels et améliore la productivité. C'est une solution constructive très conseillée pour la conception des montages d'usinage.

NORELEM n/m 738

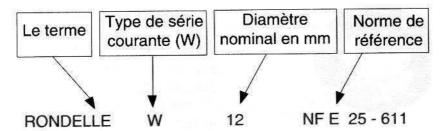
	Principales dimensions										
d	D	D1	D2	H	in E						
M5	5,25	17	12	5	0,75						
M6	6,4	22	16	6	0,8						
M8	8,4	28	20	7	1						
M10	10,5	34	25	8	1,2						
M12	13	40	30	9	1,8						

a)

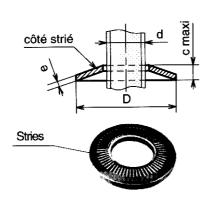





Fig. 1-25

- b) Principales rondelles freins élastiques (freinage à sécurité relative)
 - Rondelles Grower W, WZ, WL (fig. 1-26a): Le freinage est obtenu par l'élasticité de la rondelle (fig. 1-26b). La présence des becs accroît la capacité de freinage (incrustation dans la matière).

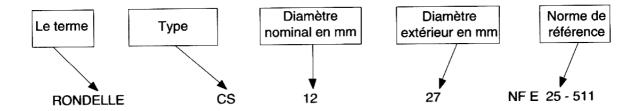


a)

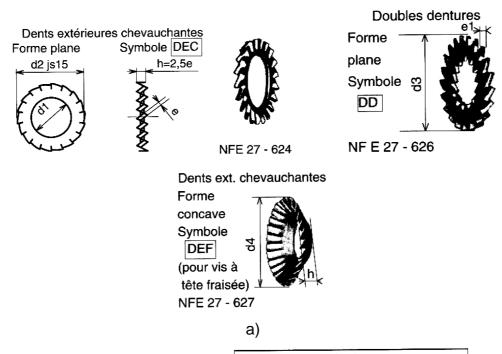

Fig. 1-26

	Principales dimensions										
d	série courante	W	série réduite	wz	série forte	WL					
	D	е	D	е	D	е					
M4	7,3	1,5	7,3	1	8,3	1,2					
M5	8,5	1,5	8,3	1	10,3	1,5					
М6	10,4	2	10,4	1,2	12,4	1,8					
M8	13,4	2,5	13,4	1,5	15,4	2					
M10	16	3	16,5	1,8	18,5	2,5					
M12	20	3,5	20	2	23	3					
(M14)	23	4	23	2,5	25	3					
M16	25	4	25	2,5	29	3,5					

La désignation est faite de manière suivante :



 Rondelles coniques striées CS (fig. 1-27): Monter la rondelle côté strié sous l'écrou.



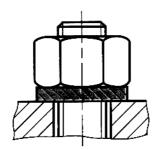
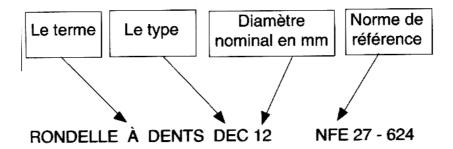
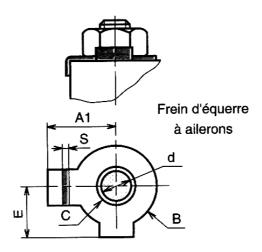

Principales dimensions											
ď		série étroite			série large						
	D	е	С	D	е	C					
M4	10	0,9	1,40	14	1	1,80					
M5	12	1,1	1,80	16	1,2	2,10					
М6	14	1,3	2,10	18	1,4	2,50					
M8	18	1,4	2,35	22	1,6	2,70					
M10	22	1,6	2,75	27	1,8	3,10					
M12	27	1,8	3,10	32	2	3,60					
(M14)	30	2,4	3,70	-	-	-					
M16	32	2,8	4,10	-	-	-					

Fig. 1-27

 Rondelles à dents chevauchantes (éventail) DEC, DIC, DD, DEF (fig. 1-28a): L'élasticité des dents ainsi que leur incrustation dans la matière assurent le freinage (fig. 1-28b).




	Principales dimensions											
٦	DEC	D	C	DD		DEF						
d	d1	d2	е	d3	d3 e1		h					
МЗ	3,05	6	0,4	12	0,5	6	1,7					
М4	4,10	8	0,5	15,5	8,0	8	2,2					
M5	5,10	9,2	0,6	17,5	8,0	10	2,5					
М6	6,10	11	0,7	18	0,9	12	3,2					
M8	8,20	14	0,8	22	1	15,5	4,1					
M10	10,20	18	0,9	26	1,1	19	4,9					
M12	12,30	20	1	30	1,2	23	6,1					
M16	16,30	26	1,2	36	1,4	31	8,2					

b)

Fig. 1-28

 Rondelle frein spéciale ou plaquette arrêtoir (NF E 27-614) (freinage à sécurité absolue) (fig. 1-29)

	Principales dimensions												
, d	A1	В	С	E min	S (acier - inox)	S (laiton)							
M6	16	16	7	8	0,5	1							
M8	18	20	9	11	1	2							
M10	22	23	11	14	1	2							
M12	25	28	14	17	1	2							
M16	32	34	18	21	1	2							
M20	40	40	22	26	1	2							

Fig. 1-29

c) Principales caractéristiques

Aptitudes	Normes de référence						
		Protection contre les meurtrissures					
Type de rondelles				Répartition de la pression de serrage Facilité de démontage Aptitude au freinage de l'écroi			
•				•	Ų ∣	V	Utilisations
Plates	0	NF E 27 - 611	++	+	+	0	Très couramment util sées en constructio mécanique
À portée sphérique		NF E 27 - 615	++	++	+	0	Permettent de comper ser les défauts angula res de la surface de se rage
Fendue amovible	C	NF E 27 - 616	++	++	++	0	Très utilisées sur le montages d'usinage. Gain de temps
Grower sans bec	0	NF E 25 - 515	+	0	+	=	Souvent utilisées pou des freinages non opt misés.
Grower avec becs	0	NF E 25 - 516 NF E 25 - 517	0	0	_	+	
Coniques striées	0	NF E 27 - 511	++	+	-		Permettent de mainte nir la tension dans le assemblages optimisés Bon contact électrique
À dents chevauchantes extérieures forme concave		NF E 27 - 627	0	0	0	+	Elles sont exclusivement utilisées avec des vis tête fraisée.
À dents chevauchantes planes extérieures et intérieures	©	NF E 27 - 624 NF E 27 - 625	0	0	0	+	Fixation de petites piè ces accessoires auto mobiles, cycles, électro ménager.
À double denture forme plane		NF E 27 - 626	0	0	0	+	Utilisées sur les glissie res des moteurs électr ques, alternateurs.
Frein spéciale (plaquette arrêtoir)	@	NF E 27 - 614	=	++	0	++	Permettent un freinag à sécurité absolue.