

ROYAUME DU MAROC

Office de la Formation Professionnelle et de la Promotion du Travail
DIRECTION RECHERCHE ET INGENIERIE DE FORMATION

RESUME THEORIQUE & GUIDE DE TRAVAUX PRATIQUES

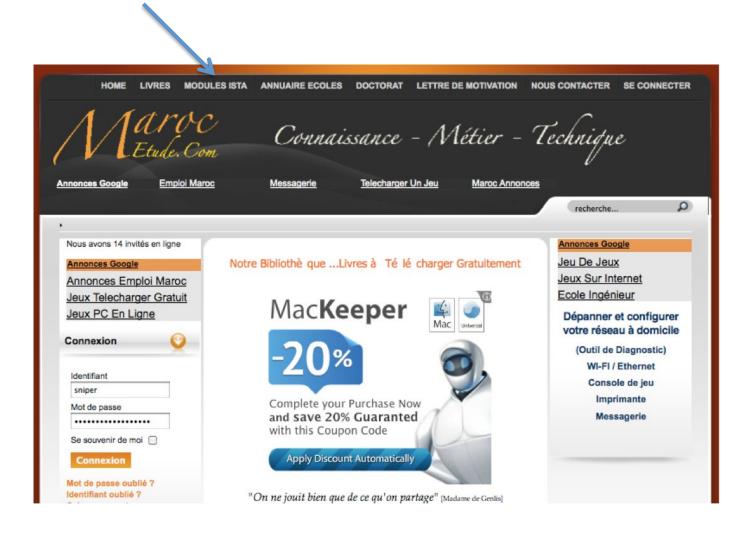
MODULE N° 12: ENTRETIEN ET DEPANNAGE D'UNE INSTALLATION FRIGORIFIQUE

SECTEUR: FROID ET GENIE THERMIQUE

SPECIALITE: MAINTENANCE HOTELIERE

NIVEAU: TECHNICIEN

MAI 2005


OFPPT/DRIF 0/155

PORTAIL DE LA FORMATION PROFESSIONNELLE AU MAROC

Télécharger tous les modules de toutes les filières de l'OFPPT sur le site dédié à la formation professionnelle au Maroc : **www.marocetude.com**

Pour cela visiter notre site <u>www.marocetude.com</u> et choisissez la rubrique :

MODULES ISTA

REMERCIEMENTS

La DRIF remercie les personnes qui ont participé ou permis l'élaboration de ce Module de formation.

Pour la supervision :

GHRAIRI RACHID: Chef de projet du Secteur Froid et Génie Thermique

BOUJNANE MOHAMED: Coordonnateur de CDC du Secteur Froid et Génie Thermique

<u>Pour l'élaboration : BEN YAACOUB YOUNESS Formateur à ISTA -RI- FES DR : C/N</u>

Les utilisateurs de ce document sont invités à communiquer à la DRIF toutes les remarques et suggestions afin de les prendre en considération pour l'enrichissement et l'amélioration de ce programme.

Monsieur Said SLAOUI
DRIF

OFPPT/DRIF 1/155

SOMMAIRE

Contenu	Page
Présentation du module	
<u>Résumé de théorie</u>	
Pratique des installations frigorifiques	
Utilisation du manifold	
Le tirage au vide	
La charge en fréon	

	OFPPT/DRIF	2/155
--	------------	-------

Resume de Theorie et Guide de travaux pratiques	Entretien et dépannage d'une installation frigorifique

OFPPT/DRIF 3/A	155
----------------	-----

Résumé de Théorie et
Guide de travaux pratiques

Entretien et dépannage d'une installation frigorifique

MODULE:	Entretien et dépannage d'une installation frigorifique	
	Durée : 140 H	
	35 % : théorique 50H	
	57 % : pratique 80	
	8% : Evaluation 10h	

OBJECTIF OPERATIONNEL DE PREMIER NIVEAU

DE COMPORTEMENT

COMPORTEMENT ATTENDU

Pour démontrer sa compétence, le stagiaire doit : Entretenir et dépanner une installation frigorifique selon les conditions, les critères et les précisions qui suivent.

CONDITIONS D'EVALUATION

- * Mise à disposition des schémas de l'installation frigorifique et électrique
- * Equipement de mesure et matériel nécessaire
- * Fiche du guide d'entretien

CRITERES GENERAUX DE PERFORMANCE

- * Justesse de recherche des anomalies
- Méthodologie de dépannage
- * Relevé exact des paramètres de l'installation tel que température, pression, etc

OFPPT/DRIF 4/155

OBJECTIF OPERATIONNEL DE PREMIER NIVEAU DE COMPORTEMENT

DE COMPORTEMENT		
PRECISIONS SUR LE COMPORTEMENT ATTENDU	CRITERES PARTICULIERS DE PERFORMANCE	
A. Effectuer les opérations de maintenance de l'installation frigorifique	 Principaux contrôles effectués sur le circuit Frigorifique Principaux contrôles effectués sur la partie Electrique Pertinence de remplissage de la fiche d'entretien de l'installation 	
B. Rechercher méthodiquement les pannes de l'installation	 Pertinence de détection des pannes frigorifiques (symptômes et causes) Pertinence de détection des pannes électriques de l'installation 	
C. Remédier aux pannes détectées	Intervention adéquate pour remédier aux pannes de dysfonctionnement	

OBJECTIES OPERATIONNELS DE SECOND NIVEAU

LE STAGIAIRE DOIT MAITRISER LES SAVOIRS, SAVOIR-FAIRE, SAVOIR-PERCEVOIR OU SAVOIR-ETRE JUGES
PREALABLES AUX APPRENTISSAGES DIRECTEMENT REQUIS POUR L'ATTEINTE DE L'OBJECTIF DE PREMIER
NIVEAU, TELS QUE:

Avant d'apprendre à effectuer les opérations de maintenance de l'installation frigorifique (A), le stagiaire doit :

- 1. Effectuer les principaux contrôles portant sur l'ensemble du circuit
- 2. Effectuer les opérations de contrôle des principaux composants du circuit frigorifique
- 3. Effectuer les principaux contrôles et vérifications de l'installation électrique
- 4. Remplir correctement le livret d'entretien.

Avant de rechercher méthodiquement les pannes de l'installation (B):

- 5. A décrire le logigramme des pannes frigorifiques
- 6. A établir une liste de toutes les mesures qu'il faut prendre en considération
- 7. A décrire tous les symptômes des pannes électriques

Avant de remédier aux pannes détectée (C):

- 8. A décrire les méthodes d'intervention pour remédier aux pannes
- 9. A intervenir sur une installation pour remédier aux pannes de dysfonctionnement.

OFPPT/DRIF 6/155

PRESENTATION DU MODULE

- Le module entretien et dépannage des installations frigorifiques
- est parmi les derniers modules de la formation du technicien en MH
- Les grandes étapes d'apprentissage concernant ce module sont :
 - Les opérations de maintenance d'une installation frigorifique.
 - ❖ La rechercher des pannes frigorifiques et électriques.
 - ❖ Les interventions pour remédier à ces pannes .
- La durée du module prévue est 142 heures et les volumes horaires alloués aux parties théorique et pratique sont respectivement 50 heures et 80 heures en fin 10h pour l'évaluation.

OFPPT/DRIF 7/155

Résumé de Théorie et Guide de travaux pratiques	Entretien et dépannage d'une installation frigorit
Carac de travaux pratiques	
<u>Module</u> : Entretien et	Dépannage des Installations Frigorifiques
RES	<u>UME THEORIQUE</u>
OFPPT/DRIF	8/1

PRATIQUE DES INSTALLATIONS FRIGORIFIQUES

Les manifolds

Constitution:

Un jeu de manifolds est composé de deux manomètres : Un BP et un HP

Manomètre BP manomètre HP

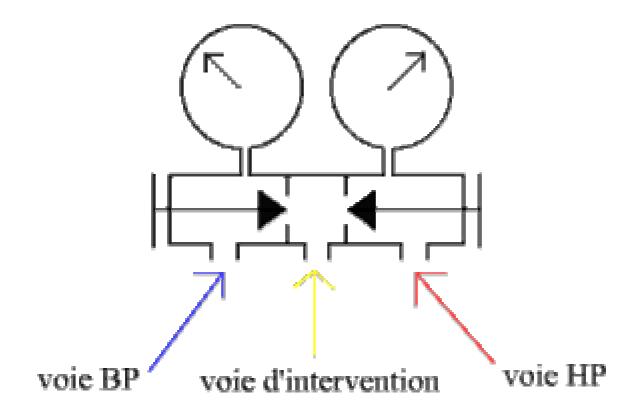
Généralement le manomètre BP est bleu et le HP est rouge.

Il en est de même pour les flexibles HP et BP.

Chaque manomètre possède une échelle de pression en bar ou psig (ici l'échelle rouge en bar).

On distingue aussi des échelles de températures qui correspondent à des températures saturées de fluide frigorigène.

Ces deux manomètres sont compatibles avec le R12 (échelle noire), le R22 (échelle verte) et le R502 (échelle mauve).


Ces couleurs sont conventionnelles, ce sont aussi celles des emballages de ces fluides frigorigènes.

Grâce à ces échelles de température on peut appliquer la relation pression température.

Exemple : Du R22 saturé à 0°C aura une pression de 4 bar.

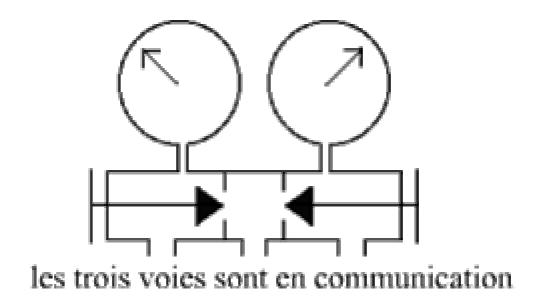
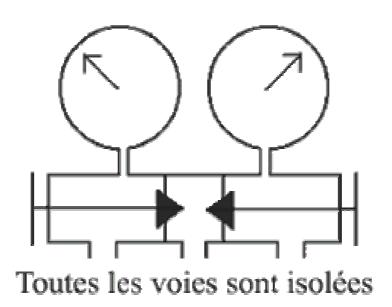
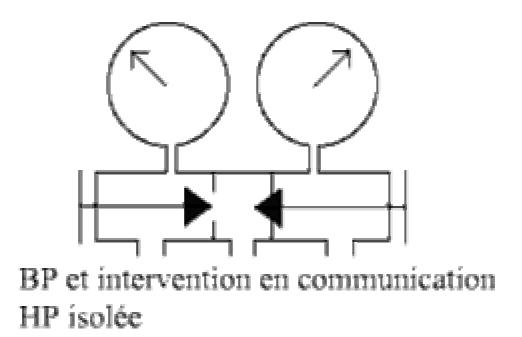

On pourra donc considéré (aux pertes de charge près) que le manomètre BP nous donnera la pression d'évaporation Po et celui HP celle de condensation Pc.

Schéma d'un manifold

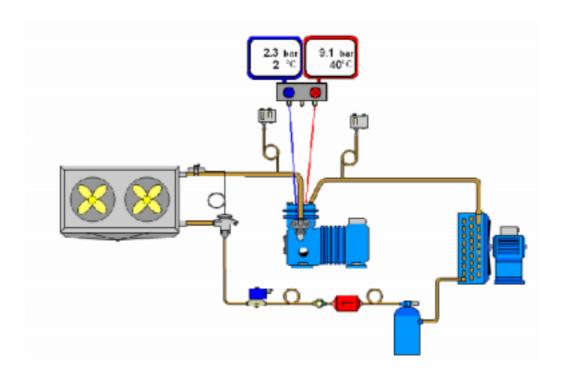


Quelques exemples d'utilisation :

Utilisation lors d'un tirage au vide.



<u>Utilisation lors de la lecture des pressions</u>


OFPPT/DRIF 11/155

Utilisation pendant la charge.

Branchement sur une installation :

On les branche généralement sur les vannes trois voies de service du compresseur. Pour cela nous aurons besoin d'une clef a cliquet.

OFPPT/DRIF 12/155

Le tirage au vide

Rôle:

Enlever l'air et l'humidité du circuit frigorifique.

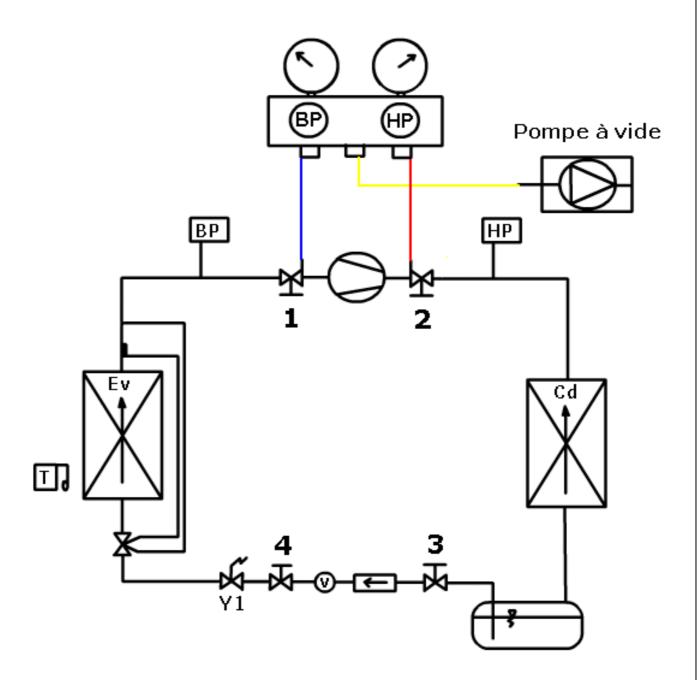
Le circuit ne doit pas être sous pression et les fuites ont été recherchées au préalable. Il ne faut jamais laisser un circuit au vide, on doit réaliser au moins une précharge une fois l'opération terminée.

Conditions de départ :

La tuyauterie est terminée, les fuites ont été recherchées, le nouveau déshydrateur vient d'être monté.

Les vannes 3 et 4 sont fermées pour préserver le déshydrateur.

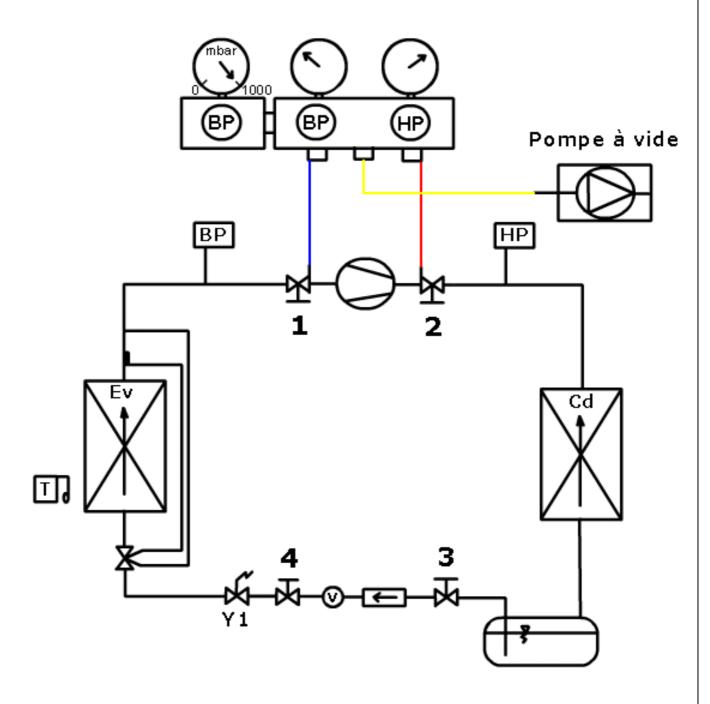
Matériel nécessaire :


- Une pompe à vide.
- Une clef à cliquet.
- Un vacuomètre si possible.
- Un jeu de manifolds.

Une pompe à vide

OFPPT/DRIF 13/155

Tirage au vide sans vacuomètre :

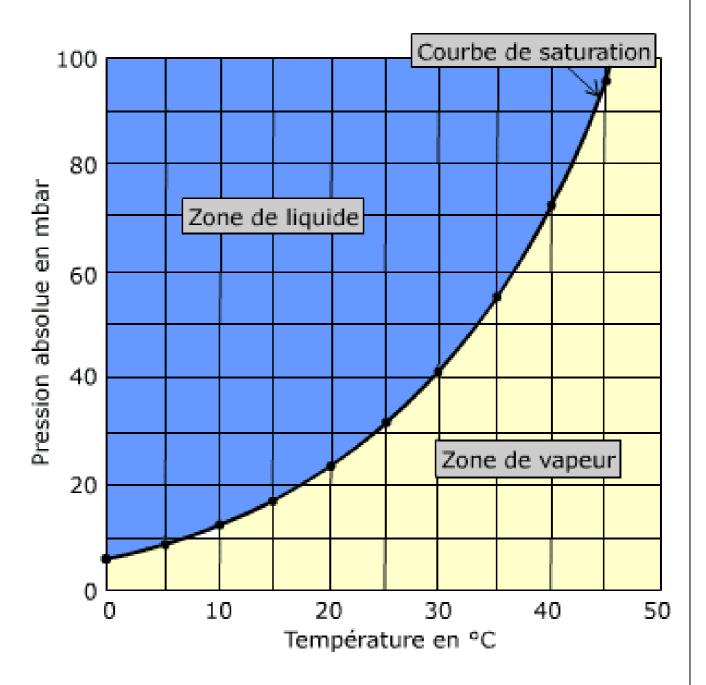


Mode opératoire du tirage au vide : (sans vacuomètre)

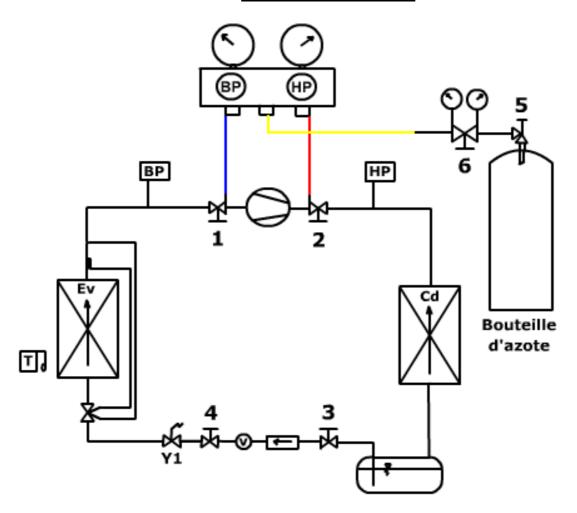
- Vérifier le niveau d'huile de la pompe à vide puis raccorder la sur la voie d'intervention du jeu de manos.
- Démarrer la pompe à vide.
- Mettre les vannes 1 et 2 en position intermédiaire et vérifier que le circuit ne soit pas sous pression.
- > Ouvrir les by-pass du jeu de manifolds, vérifier que la pression diminue sur les aiguilles des manos HP et BP.
- Ouvrir les vannes 3 et 4.
- Au bout d'un moment, refermer les by-pass du jeu de manifolds et vérifier la tenue du vide.
- Casser le vide à l'azote sec si possible (voir dernier paragraphe du cours).
- Le tirage sera terminé quand les aiguilles des manos HP et BP indiqueront -1 bar.
- A ce moment là, refermer les by-pass HP et BP du jeu de manifolds et arrêter la pompe à vide. Vous réaliserez la charge du système immédiatement.

OFPPT/DRIF 15/155

Tirage au vide avec vacuomètre :



Mode opératoire du tirage au vide : (avec vacuomètre)


- Utiliser la courbe de relation Pression-Tempéraure pour l'eau afin de savoir jusqu'à quelle pression tirer au vide.
- Indiquez votre résultat sur le vacuomètre à l'aide de l'aiguille repère.
- Branchez la pompe à vide après avoir vérifié son niveau d'huile et démarrez la.
- Mettre les vannes 1 et 2 en position intermédiaire et vérifier que le circuit ne soit pas sous pression.
- Ouvrir les by-pass du jeu de manifolds ainsi que la vanne du vacuomètre, la pression doit commencer à diminuer sur les aiguilles des manos HP et BP.
- Ouvrir les vannes 3 et 4.
- Au bout d'un moment, refermer les by-pass du jeu de manifolds et vérifier la tenue du vide.
- Casser le vide à l'azote sec si possible en pensant à refermer le robinet du vacuomètre pendant l'opération (voir dernier paragraphe du cours).
- Le tirage sera terminé quand l'aiguille du vacuomètre sera sous celle de repère.
- A ce moment là, refermer les by-pass HP et BP du jeu de manifolds ainsi que la vanne du vacuomètre et arrêter la pompe à vide.
- Vous réaliserez la charge du système immédiatement.

OFPPT/DRIF 17/155

Courbe de saturation d'eau

Casser le vide à l'azote :

- Raccorder le flexible sur le raccord du manodétendeur 6.
- Desserrez le manodétendeur, ouvrir 5 et régler le manodétendeur pour avoir 10 bar de détente.
- Réouvrir les by-pass des manifolds pour introduire l'azote.
- Refermer la vanne 5 et débrancher la bouteille d'azote.
- L'azote s'échappe de l'installation.
- ➤ Une fois la pression tombée à 0,5 bar environ sur les aiguilles des manos HP et BP, rebranchez la pompe à vide et redémarrer le pour continuer le tirage au vide.

OFPPT/DRIF 19/155

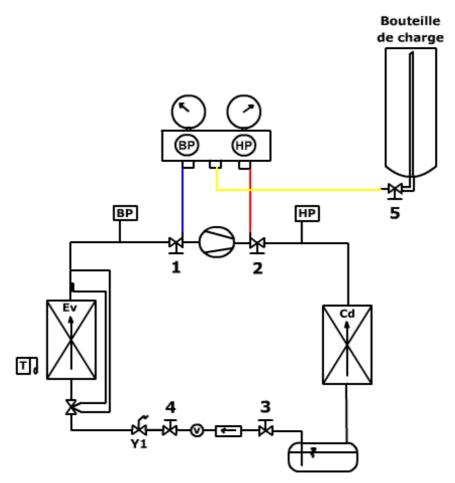
La charge en vapeurs

Rôle:

Introduire le réfrigérant nécessaire au fonctionnement de l'installation frigorifique.

Cette de charge est longue point de vue temps mais très sécurisée pour le compresseur.

Attention : Cette méthode de charge n'est pas compatible avec les nouveaux fluides et les mélanges.


Conditions de départ :

Une installation tirée au vide et étanche, les appareils de sécurités et de régulations sont préréglés.

Le jeux de manifolds est resté monté sur l'installation, by-pass fermés.

Matériel nécessaire :

- Une bouteille de réfrigérant.
- Une clef à cliquet.
- Un thermomètre équipé d'une sonde de contact.
- Un jeu de manifolds.

OFPPT/DRIF 20/155

Mode opératoire de la charge en vapeurs :

- Raccorder la bouteille de charge tête en bas sur la voie d'intervention du jeu de manifolds.
- Ouvrir la vanne 5 et purger le flexible d'intervention sur le jeu de manos.
- Vérifier la tenue du vide et la position des vannes 4 et 3. (elles doivent être ouvertes)
- Installation à l'arrêt, introduire des vapeurs dans le circuit BP et HP en ouvrant les by-pass HP et BP du jeu de manifolds.
- Refermer le by-pass HP du jeu de manos.
- Démarrer l'installation.
- Dès que les premières bulles apparaissent au voyant de liquide, fermer le by-pass BP du jeu de manos.
- Refermer légèrement la vanne 1 vers l'arrière si l'aiguille BP du manos tremble.
 (idem pour celle HP avec la vanne 2)
- Si la BP n'est pas stable, réintroduire du fluide par le by-pass BP du jeu de manifolds jusqu'à stabilisation. Sinon, attendre le régime permanent.
- ➤ En régime permanent, ajuster la charge par le by-pass BP du jeu de manos pour avoir un sous refroidissement compris entre 4 et 7°C.
- Une fois le sous refroidissement bon, fermer la vanne 5, le by-pass BP du jeu de manos et démonter la bouteille de charge.
- Continuer les opérations de réglages des sécurités et des régulations.

OFPPT/DRIF 21/155

La charge en liquide

Rôle:

Introduire le réfrigérant nécessaire au fonctionnement de l'installation frigorifique.

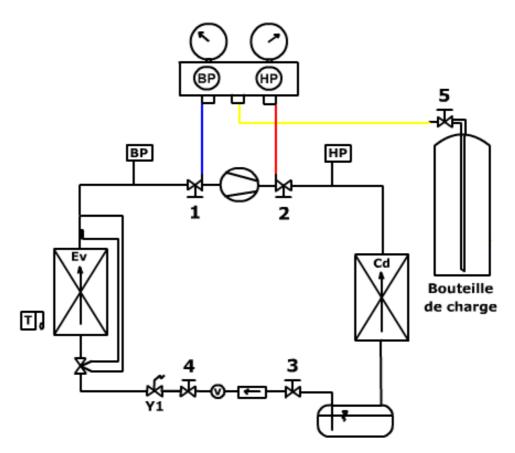
Cette de charge est rapide point de vue temps mais risquée pour le compresseur.

Cette méthode de charge est compatible avec les nouveaux fluides et les mélanges.

Conditions de départ :

Une installation tirée au vide et étanche, les appareils de sécurités et de régulations sont préréglés.

Le jeu de manifolds est resté monté sur l'installation, by-pass fermés.


Matériel nécessaire :

Une bouteille de réfrigérant.

Une clef à cliquet.

Un thermomètre équipé d'une sonde de contact.

Un jeu de manifolds.

OFPPT/DRIF 22/155

Mode opératoire de la charge en liquide :

- Raccorder la bouteille de charge tête en haut sur la voie d'intervention du jeu de manifolds.
- Ouvrir la vanne 5 et purger le flexible d'intervention sur le jeu de manos.
- Vérifier la tenue du vide et la position des vannes 4 et 3 qui doivent être ouvertes.
- Installation à l'arrêt, introduire du fluide frigorigène dans le circuit BP et HP en ouvrant brièvement les by-pass HP et BP du jeu de manifolds.
- Refermer les by-pass BP et HP du jeu de manos.
- Démarrer l'installation.
- Introduire le réfrigérant en faisant des détentes avec le by-pass BP.
- Dès que les premières bulles apparaissent au voyant de liquide, fermer le by-pass BP du jeu de manos.
- Refermer légèrement la vanne 1 vers l'arrière si l'aiguille BP du manos tremble.
 (idem pour celle HP avec la vanne 2)
- Si la BP n'est pas stable, réintroduire du fluide par le by-pass BP du jeu de manifolds comme expliqué précédemment jusqu'à stabilisation. Sinon, attendre le régime permanent.
- ➤ En régime permanent, ajuster la charge par le by-pass BP du jeu de manos pour avoir un sous refroidissement compris entre 4 et 7°C.
- Une fois le sous-refroidissement bon, fermer la vanne 5, le by-pass BP du jeu de manos et démonter la bouteille de charge.
- Continuer les opérations de réglages des sécurités et des régulations.

OFPPT/DRIF 23/155

La mise en service

Actions préliminaires à la mise sous tension :

- 1. Tirage au vide.
- 2. Casser le vide à l'azote sec et vérifier les fuites au milles bulles (on peut remplacer l'azote par du fluide frigo et dans ce cas on peut utiliser une lampe haloïde ou un détecteur électronique).
- 3. Fin du tirage au vide.
- 4. Préréglage des pressostats (réglages théoriques).
- 5. Préréglage du thermostat (sauf si électronique).
- 6. Réglage des relais thermiques des moteurs de ventilateurs (vous trouverez l'intensité absorbée sur la plaque signalétique du moteur).
- 7. Préréglage du relais thermique du moteur du compresseur (préréglez le à l'intensité nominale du moteur qui l'entraîne).
- 8. Vérification du calibre des fusibles du sectionneur.
- 9. Pré charge (ou charge au cylindre quand nous connaissons la quantité de fluide à mettre dans l'installation).

Évidement, vous pourrez effectuer certaines de ces opérations pendant le tirage au vide.

OFPPT/DRIF 24/155

Actions à réaliser après le démarrage :

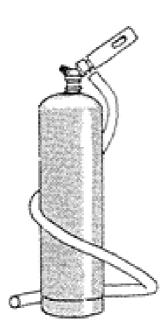
- Préparez les sondes nécessaires à la mesure de la surchauffe, du sousrefroidissement et des Δθtotal.
- Attendre le régime permanent. Vous devrez sûrement ajouter un peu de fluide. Le voyant de liquide et le fonctionnement de l'installation vous guiderons pour cela (sous-refroidissement nul, peu de fluide au voyant, impossibilité de descendre en température).

Actions à réaliser pendant le régime permanent :

- Appoint de charge si nécessaire jusqu'à avoir un sous-refroidissement compris entre 4 et 7°C.
- 2. Modification du réglage du détendeur si la surchauffe n'est pas comprise entre 5 et 8°C.
- 3. Vérification des $\Delta\theta$ total I évaporateur et condenseur.
- 4. Réglage du relais thermique du moteur du compresseur à la pince ampèremétrique (il doit être réglé en prenant l'intensité absorbée par ce moteur quand la température de chambre froide à sa valeur maximale).
- 5. Réglage final des pressostats BP et HP.
- 6. Réglage final du thermostat.
- 7. Remplir un compte rendu de mise en service qui comporte tout les paramètres de fonctionnement de la chambre froide (HP, BP, réglages...)

Cela sera utile en cas de panne!

OFPPT/DRIF 25/155


Technologie de détection de fuites

La détection des fuites sur une installation neuve ou lors d'une intervention sur une installation frigorifique est une chose très importante. Et il faut lui apporter le plus grand soin.

Conséquence du Protocole de Montréal, le confinement du fluide frigorigène dans les systèmes est devenu une priorité.

Le décret n'98-560 paru le 30 juin 1998 rend la détection des fuites et leur réparation obligatoires à partir de juin 1999.

La lampe haloïde :

Une flamme chauffe une plaque de cuivre. En présence de chlore, la flamme devient verdâtre.

Pours fluides chlorés uniquement.

Utilisation inadaptée aux HFC.

Peu fiable pour les fuites de moins de 14 g/ an.

Ne permet pas de quantifier la fuite.

OFPPT/DRIF 26/155

L'eau savonneuse :

Formation de bulles en cas de fuite après pulvérisation d'une solution aqueuse épaisse sur les surfaces ou canalisations à contrôler.

Convient pour la plupart des fluides.

Pas assez précis pour les petites fuites.

Ne permet pas de quantifier la fuite.

La détection électronique à effet Corona :

Lorsqu'un gaz est soumis à un champ électrique, il s'ionise et forme un nuage d'électrons. La présence d'un autre gaz modifie ionisation.

Bonne sensibilité aux CFC mais nettement moindre pour les fluides actuels.

OFPPT/DRIF 27/155

La détection électronique à conductivité thermique :

Les oxydes métalliques disposent d'une conductivité thermique qui varie fortement selon les gaz en présence.

Bonne sensibilité aux HFC, mais également pour tous les gaz.

Quantification des fuites possible.

Sensibilité inférieure à 5 g/ an.

Détection électronique à diode chauffée :

Au contact de la surface chaude (> 500°C), l'halogène (CI-Br-F) est séparé de la molécule et ionisé.

Le flux de courant électrique créé est dirigé vers une électrode collectrice.

Bonne technologie pour tous les fluides frigorigènes.

Sensibilité inférieure à 5 g/ an.

Détection ultrasonique :

Une fuite émet dans le domaine audible mais aussi dans celui des hautes fréquences.

Les fréquences ultrasoniques (20 kHz - 200 kHz) sont converties en sons audibles et s'entendent à l'endroit de la fuite.

Satisfaisant pour tous les fluides frigorigènes.

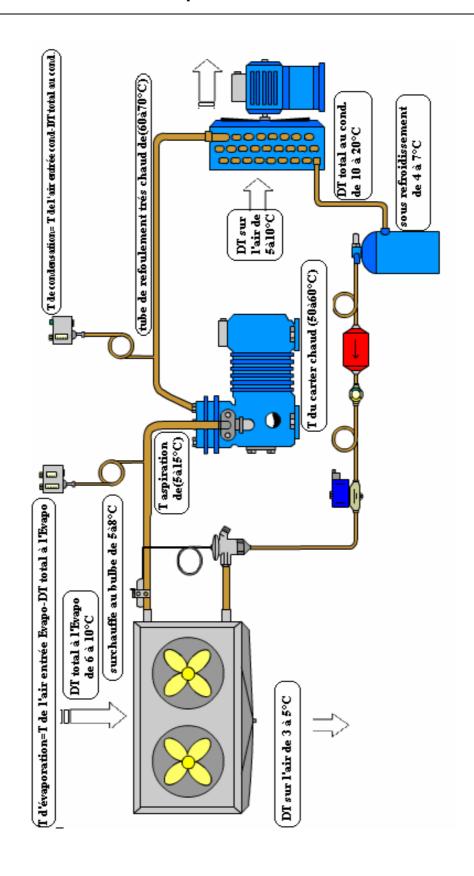
Sensibilité médiocre à ce jour.

<u>Détection par fluorescence :</u>

On introduit un traceur fluorescent dans l'huile du compresseur. Après homogénéisation, il suffit d'inspecter le circuit avec une lampe émettrice de rayons U.V. Les points luminescents jaune vert apparaissent à l'endroit des fuites. Satisfaisant pour tous les fluides frigorigènes.

Sensibilité minimale de l'ordre de 7 g/ an.

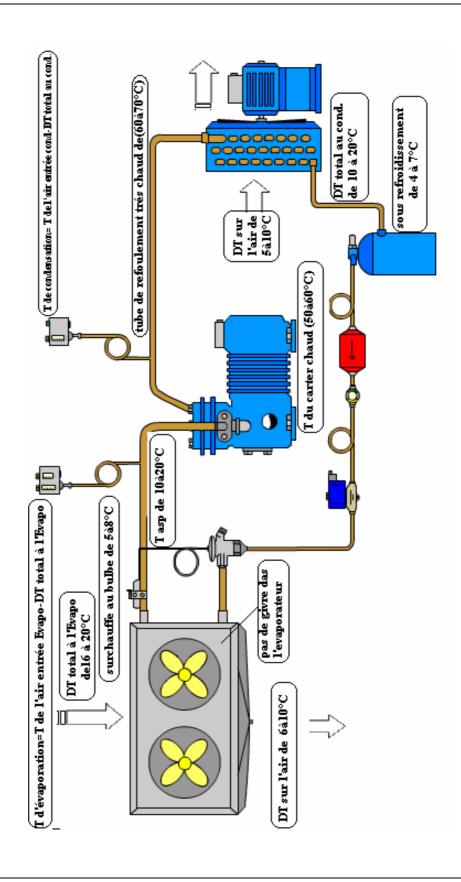
Détection par coloration :


On introduit un traceur coloré dans l'huile du compresseur. Après homogénéisation, la pression dans le circuit rend la coloration visible à chaque endroit où il y a la fuite. Procédé abandonné en raison de plusieurs risques : nocivité, action sur les joints, problèmes de fonctionnement, etc...

«Source dehon service infos».

OFPPT/DRIF 28/155

ISTALLATION DE FROID COMMERCIAL AU R134a


Valeurs indicatives de divers paramètres de fonctionnement normal

OFPPT/DRIF 29/155

ISTALLATION DE CLIMATISATION AU R22

Valeurs indicatives de divers paramètres de fonctionnement normal

OFPPT/DRIF 30/155

DEPANNAGES INTRODUCTION

Les 4 premières familles de pannes provoquent une puissance frigorifique trop petite avec Une BP anormalement faible :

- 1) *pannes du détendeur trop petit* (la puissance du détendeur est insuffisante).
- Pannes du manque de charge (il n'y a pas assez de fluide frigorigène dans le circuit).
- 3) **Pannes de la pré-détente** (une pré-détente parasite se produit dans la ligne liquide avant le détendeur).
- 4) **Pannes de l'évaporateur trop petit** (la puissance de l'évaporateur est insuffisante).

<u>La cinquième famille de pannes provoque une puissance frigorifique</u> <u>trop faible avec Une BP élevée :</u>

5) *pannes du compresseur trop petit* (la puissance du compresseur est insuffisante).

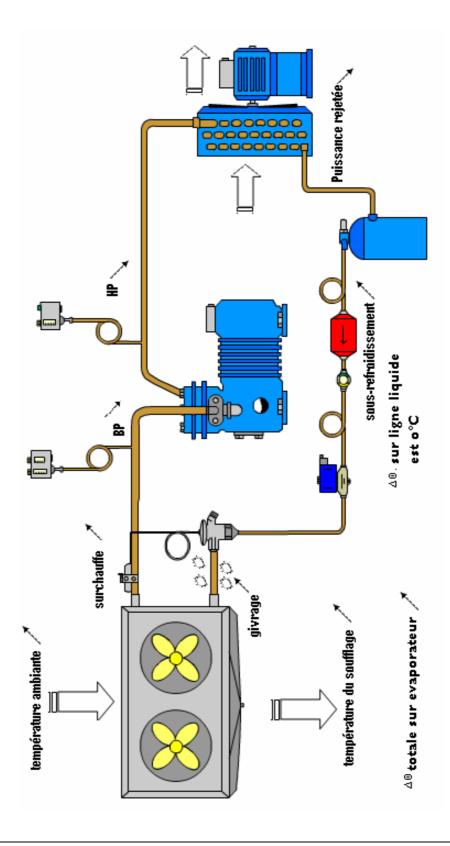
Les 3 dernières familles de pannes provoquent une élévation anormale de la HP :

- 6) pannes de l'excès de charge (il y a trop de fluide frigorigène dans le circuit).
- 7) *pannes des incondensables* (il y a un excès important d'incondensable dans le circuit).
- 8) pannes du condenseur trop petit (la puissance du condenseur est insuffisante).

OFPPT/DRIF 31/155

Pannes principales

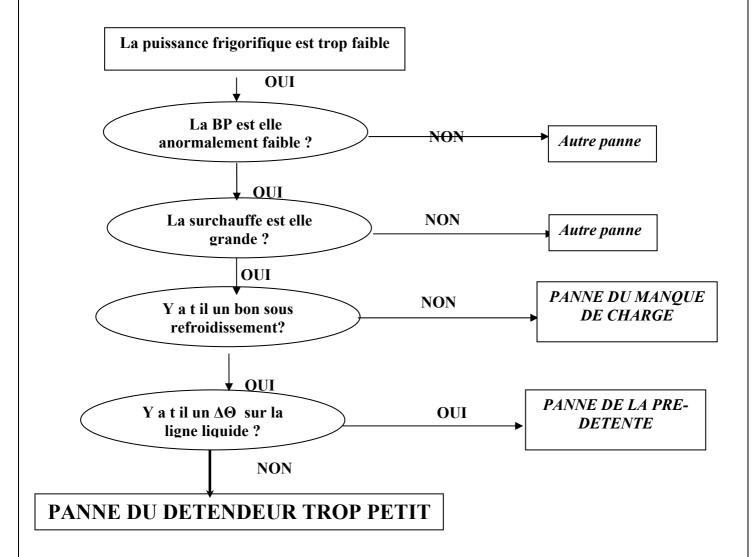
Lorsque vous arrivez sur une installation frigorifique en panne, la première chose à faire est toujours d'aller voir le client afin d'avoir le maximum d'indications sur les motifs de son appel (il fait trop chaud en ambiance, l'installation fait un bruit anormal, elle fait disjoncter le réseau électrique, un autre dépanneur est venu récemment...). Ensuite, il faut "observer", "écouter" et éventuellement "sentir" l'installation (surtout si on ne la connaît pas) afin de déceler d'éventuels indices (état général, traces d'huile, bruits suspects, odeurs de brûlé). Puis il faut monter les manomètres et être certain du fluide frigorigène utilisé dans le circuit, (regardez le train thermostatique du détendeur, cherchez une étiquette de signalisation...).


Dans la majorité des cas, l'installation peut fonctionner (mal, mais le compresseur tourne) et la panne fait partie d'une des 8 familles que nous venons d'étudier. Votre rôle est de trouver laquelle, de réparer et de vous assurer qu'il n'y aura pas d'autres ennuis à court terme.

Raisonnez toujours en températures plutôt qu'en pressions. Vos raisonnements resteront valables quelque soit le fluide frigorigène utilisé dans l'installation (R22, R134a, R404A, R407C...)!

PENSEZ BIEN QU'UNE GRANDE SURCHAUFFE INDIQUE TOUJOURS UN MANQUE IMPORTANT DE LIQUIDE DANS L'ÉVAPORATEUR ET QU'UN FAIBLE SOUS REFROIDISSEMENT INDIQUE SOIT UN MANQUE DE CHARGE (SI LA BP EST FAIBLE), SOIT UN CONDENSEUR TROP PETIT (SI LA HP EST ÉLEVÉE).

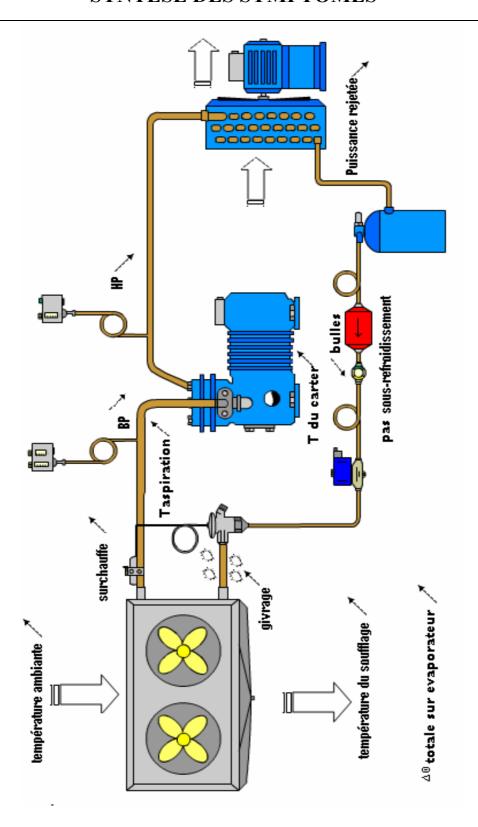
OFPPT/DRIF 32/155


PANNE DU DETENDEUR TROP PETIT SYNTHESE DES SYMPTOMES

OFPPT/DRIF 33/155

PANNE DU DETENDEUR TROP PETIT

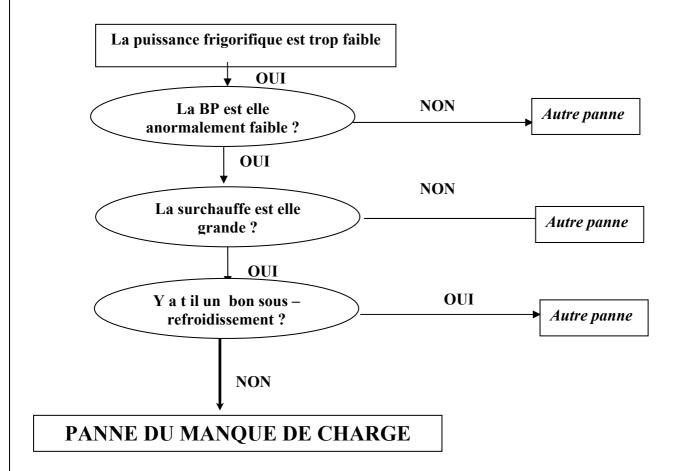
METHODOLOGIE DU DIAGNOSTIQUE



RESUME DE LA PANNE DETENDEUR TROP PETIT:

- PUISSANCE FRIGORIFIQUE FAIBLE
- BP FAIBLE
- GRANDE SURCHAUFFE
- BON SOUS REFROIDISSEMENT
- PAS DE ∆Ø SUR LA LIGNE LIQUIDE

OFPPT/DRIF 34/155

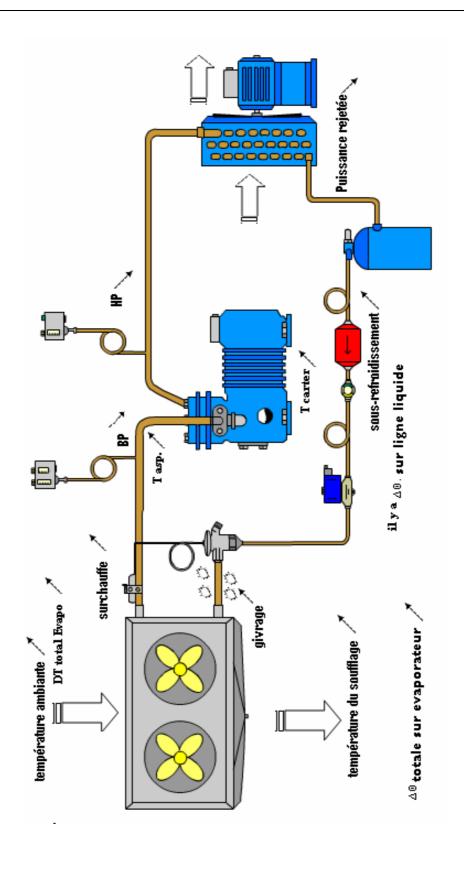

PANNE DU MANQUE DE CHARGE SYNTESE DES SYMPTOMES

OFPPT/DRIF 35/155

PANNE DU MANQUE DE CHARGE

METHODOLOGIE DU DIAGNOSTIQUE

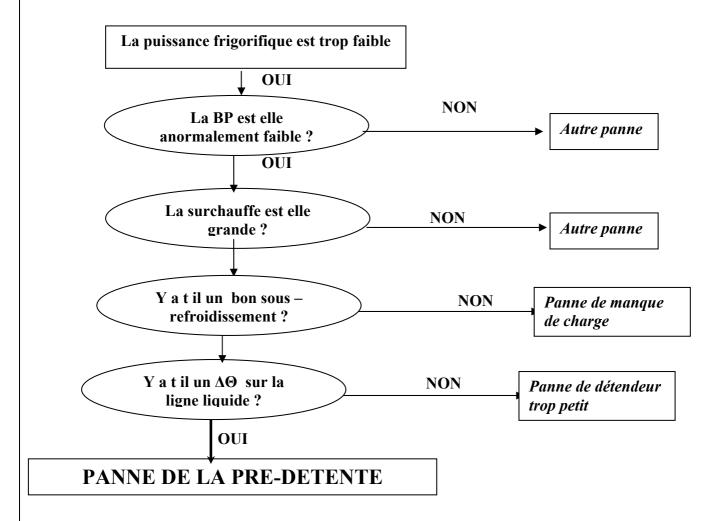
Remarque:


UN manque de fluide frigorigène dans le condenseur se Caractérise toujours par un faible sous refroidissement !

RESUME DE LA PANNE MANQUE DE CHARGE:

- PUISSANCE FRIGORIFIQUE FAIBLE
- BP FAIBLE
- GRANDE SURCHAUFFE
- MAUVAIS SOUS -REFROIDISSEMENT

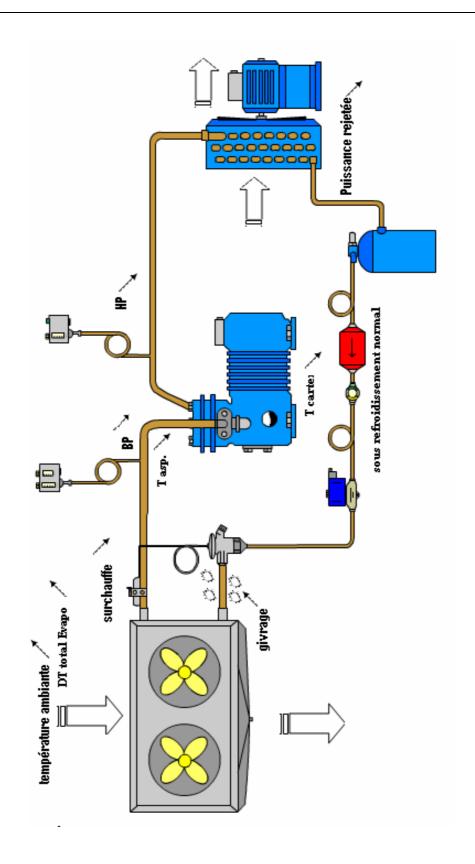
OFPPT/DRIF 36/155


PANNE DE LA PRE-DETENTE SYNTHESE DES SYMPTOMES

OFPPT/DRIF 37/155

PANNE DE LA PRE-DETENTE

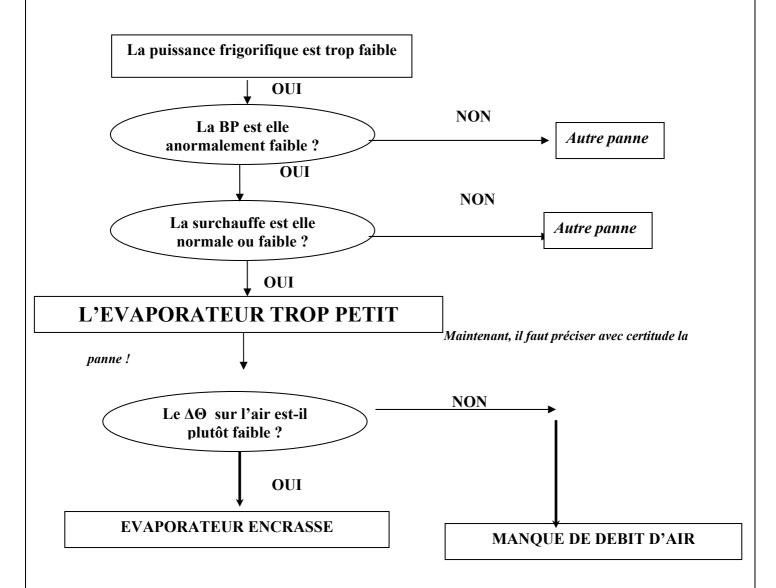
METHODOLOGIE DU DIAGNOSTIQUE



RESUME DE LA PANNE DE LA PRE DETENTE:

- PUISSANCE FRIGORIFIQUE FAIBLE
- BP FAIBLE
- GRANDE SURCHAUFFE
- BON SOUS -REFROIDISSEMENT
- 40 SUR LA LINGE LIQUIDE

OFPPT/DRIF 38/155


PANNE DE L'EVAPORATEUR TROP PETIT SYNTHESE DES SYMPTOMES

OFPPT/DRIF 39/155

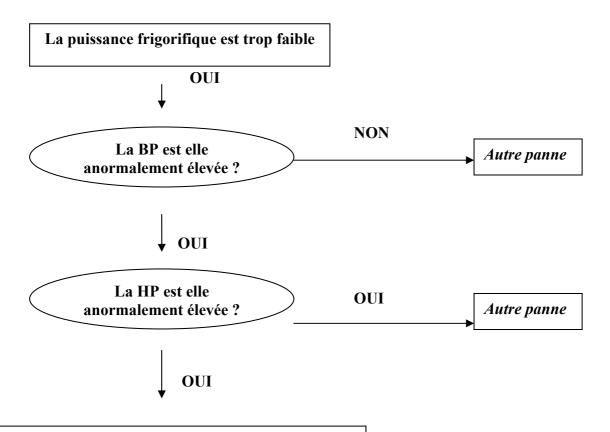
PANNE DE L'EVAPORATEUR TROP PETIT

METHODOLOGIE DU DIAGNOSTIQUE



RESUME DE L'EVAPORATEUR TROP PRTIT :

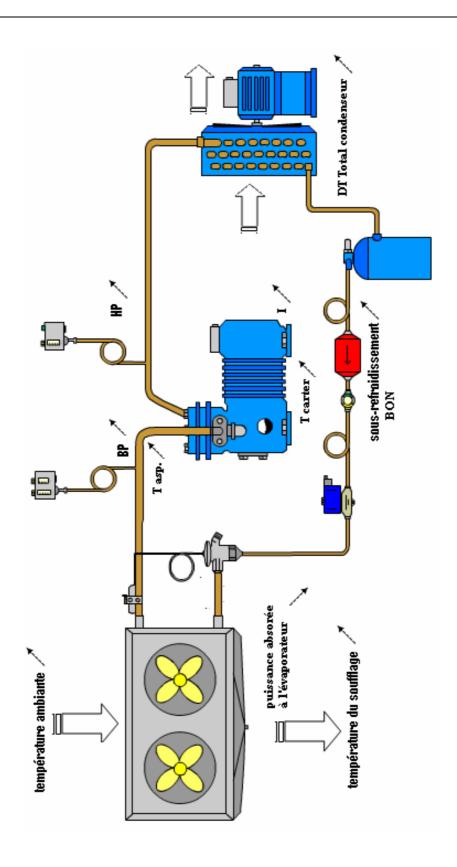
- PUISSANCE FRIGORIFIQUE FAIBLE
- BP FAIBLE
- SURCHAUFFE FAIBLE


OFPPT/DRIF 40/155

PANNE DU COMPRESSEUR TROP PETIT SYNTHESE DES SYMPTOMES

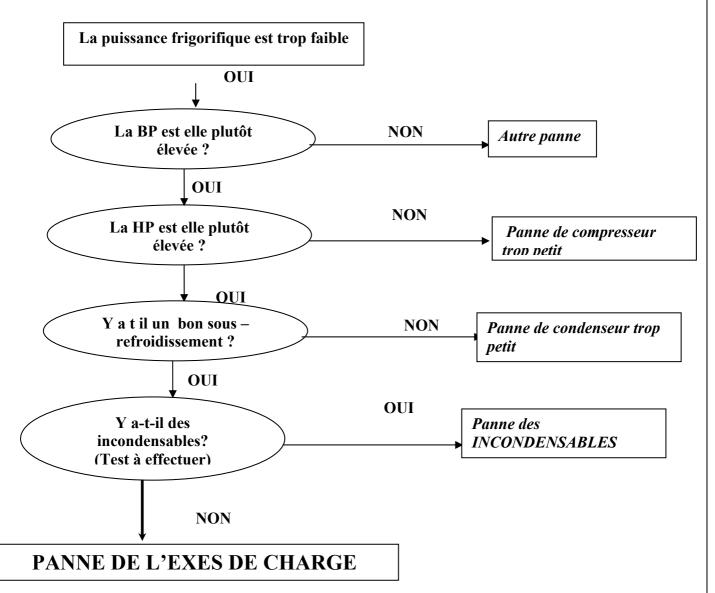
PANNE DU COMPRESSEUR TROP PETIT

METHODOLOGIE DU DIAGNOSTIQUE


COMPRESSEUR TROP PETIT

<u>RESUME DU COMPRESSEUR TROP PRTIT :</u>

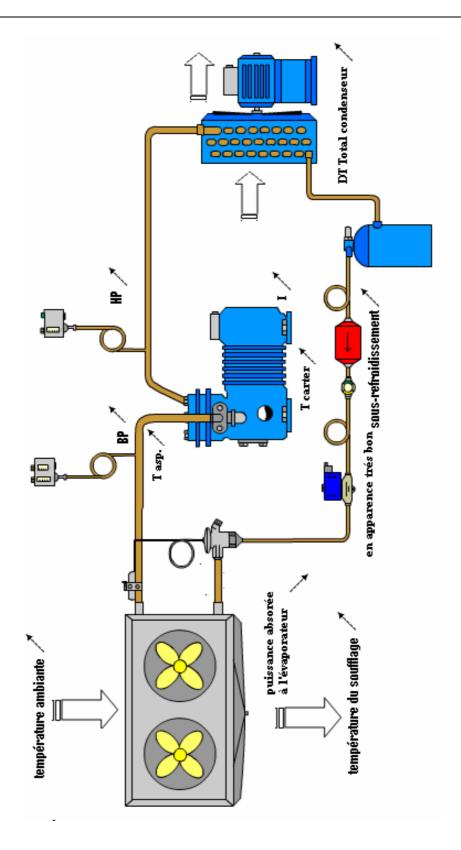
- PUISSANCE FRIGORIFIQUE FAIBLE
- BP ELEVEE
- HP NORMALE VOIR FAIBLE


OFPPT/DRIF 42/155

PANNE DE L'EXES DE CHARGE SYNTHESE DES SYMPTOMES

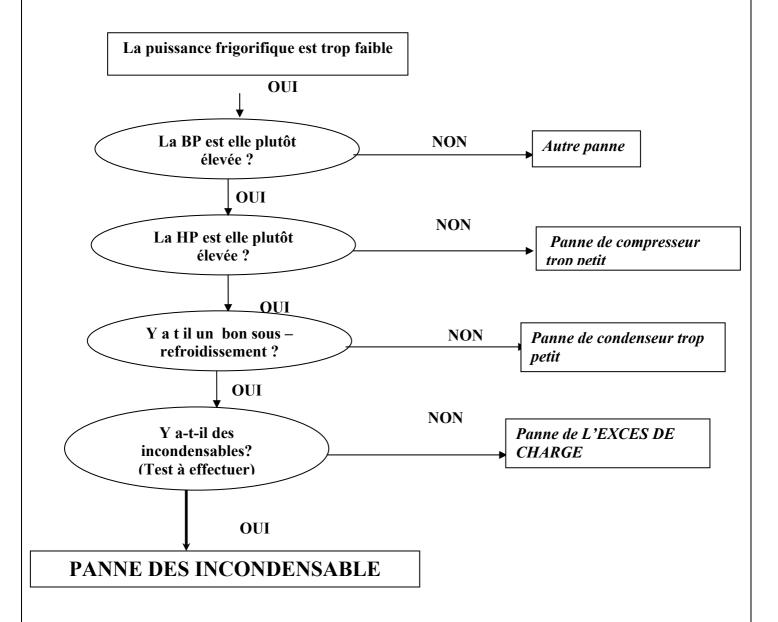
PANNE DE L'EXES DE CHARGE

METHODOLOGIE DU DIAGNOSTIQUE



RESUME DE L'EXES DE CHARGE:

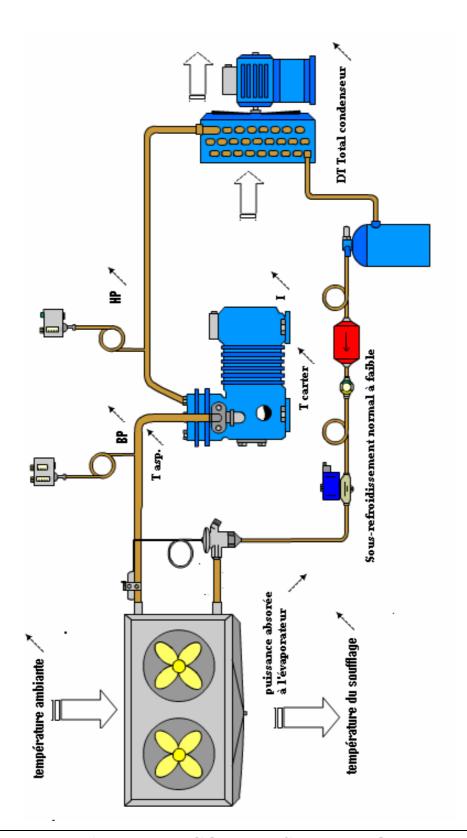
- PUISSANCE FRIGORIFIQUE FAIBLE
- BP ELEVEE
- HP ELEVEE
- BON SOUS REFROIDISSEMENT
- TEST DES INCONDENSABLES NEGATIF


OFPPT/DRIF 44/155

PANNE DES INCONDENSABLES : SYNTHESE DES SYMPTOMES

PANNE DES INCONDENSABLES

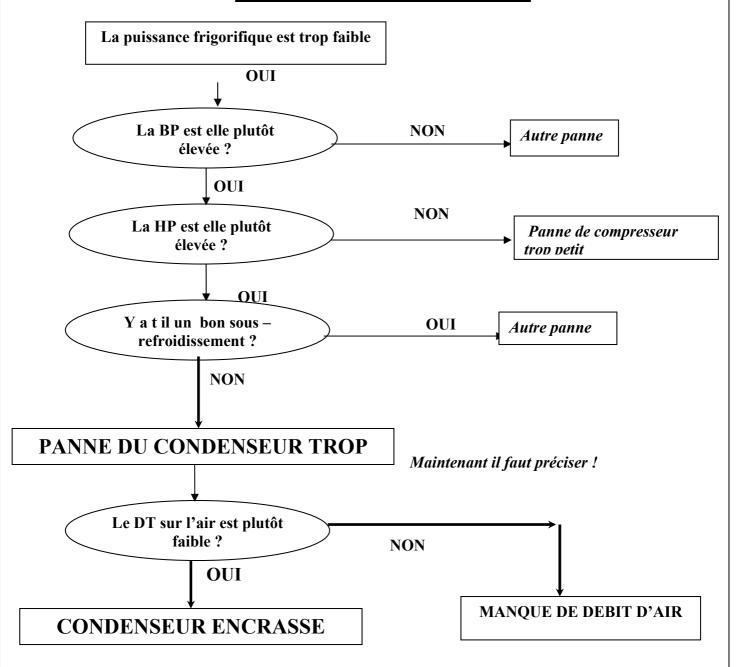
METHODOLOGIE DU DIAGNOSTIQUE


RESUME DES INCONDENSABLES:

- PUISSANCE FRIGORIFIQUE FAIBLE
- BP ELEVEE
- HP ELEVEE
- BON SOUS REFROIDISSEMENT
- TEST DES INCONDENSABLES POSITIF

PANNE DU CONDENSEUR TROP PETIT

OFPPT/DRIF 46/155


SYNTHESE DES SYMPTOMES

PANNE DU CONDENSEUR TROP PETIT

OFPPT/DRIF 47/155

METHODOLOGIE DU DIAGNOSTIQUE

RESUME DE CONDENSEUR TROP PETIT:

- PUISSANCE FRIGORIFIQUE FAIBLE
- BP ELEVEE
- HP ELEVEE
- SOUS REFROIDISSEMENT NORMAL A FAIBLE

OFPPT/DRIF 48/155

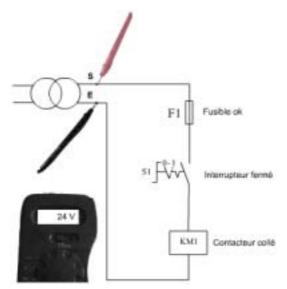
Le dépannage électrique

Quel appareil utiliser et dans quel cas ?

Il existe deux types de pannes électriques qui engendrent deux situations de dépannage différentes :

L'armoire électrique est restée sous tension (coupure d'une sécurité par exemple).

Dans ce cas le dépannage s'effectue au voltmètre.

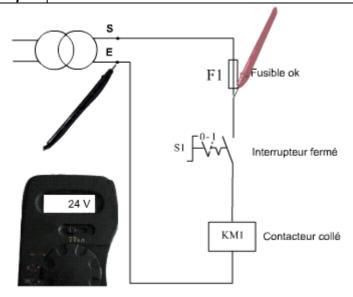

L'armoire électrique n'est plus alimentée (court-circuit par exemple).

Dans ce cas le dépannage doit se faire à l'ohmmètre.

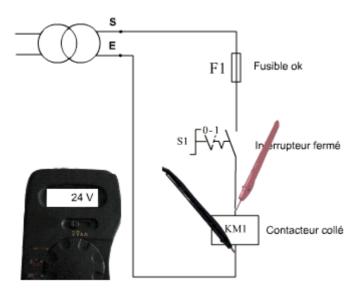
Le dépannage au voltmètre.

Etude d'un fonctionnement normal :

Par soucis de respect de la symbolisation électrique, les éléments sont représentés au repos.

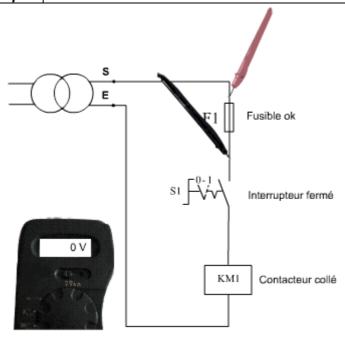


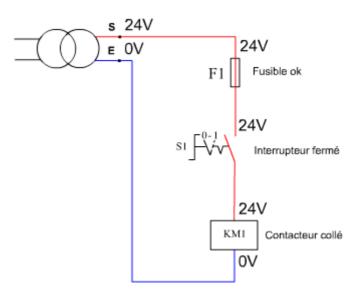
Un voltmètre placé aux bornes du secondaire d'un transformateur mesure une tension de 24V. On parle aussi d'une différence de potentiel de 24V.


Sur notre transformateur le potentiel du point S Vs=24V et celui du point E Ve=0V. Notre voltmètre mesure donc Use=Vs-Ve=24-0=24V. Cela prouve que notre transformateur délivre du courant.

OFPPT/DRIF 49/155

Entretien et dépannage d'une installation frigorifique


En déplaçant la fiche rouge du point S à la sortie de la porte fusible, on relève encore 24V. Cela signifie que le potentiel de ce nouveau point est aussi de 24V.

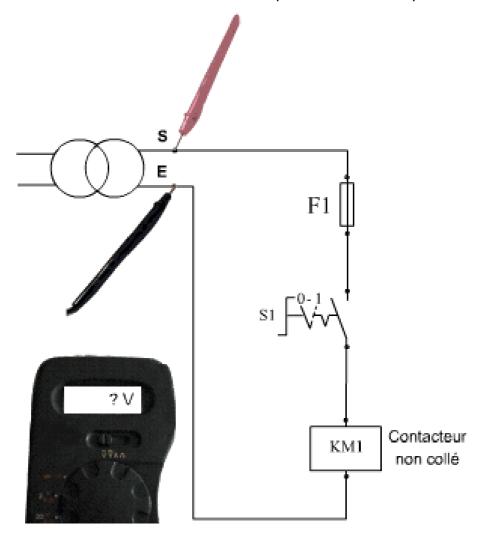

En plaçant les fiches du voltmètre entre les bornes de la bobine du contacteur, on relève 24V. Le potentiel 24V a donc été distribué jusqu'à la borne A1 de la bobine du contacteur et celui de 0V jusqu'à sa borne A2. C'est pourquoi on mesure une différence de potentiel de 24V.

Le récepteur consomme les 24V délivrés par le générateur.

OFPPT/DRIF 50/155

En plaçant les fiches du voltmètre entre les bornes du porte fusible F1, on mesure 0V. Cela signifie que les deux bornes du porte fusible sont au même potentiel. U=24-24=0V.

En coloriant les conducteurs au potentiel 24V en rouge et ceux au potentiel 0V en bleu, on obtient le schéma ci-dessus. On peut facilement conclure que toutes mesures entre bleu et bleu et entre rouge et rouge nous donne U=0V. Seules les mesure entre rouge et bleu nous donne U=24V.

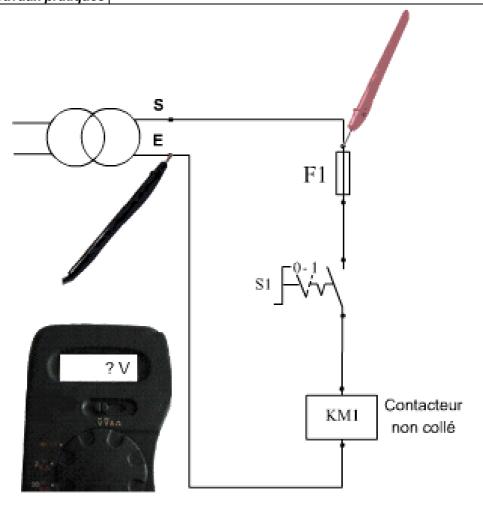

Tous les points situés au dessus du récepteur sont au même potentiel que l'alimentation 24V.

Tous les points situés en dessous du récepteur sont au potentiel 0V.

OFPPT/DRIF 51/155

Etude d'une panne :

Sur cette même installation, nous allons supposer que le contacteur ne veut pas coller... Nous allons effectuer une série de mesure et interpréter les résultats possibles.

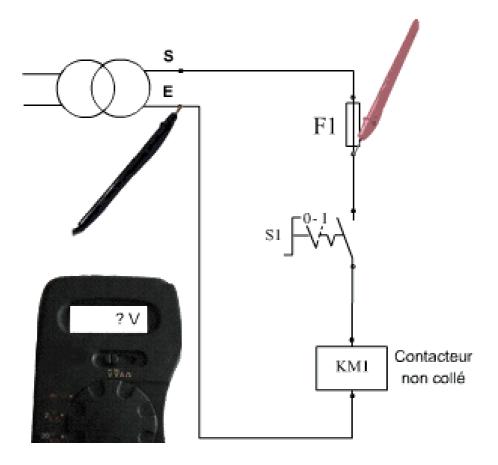

Le voltmètre indique 0V :

Le transformateur ne délivre pas sa tension de secondaire. La panne se situe sûrement au primaire du transformateur ou alors c'est le transformateur lui même qui est défectueux. Voilà pourquoi le contacteur ne colle pas.

Le voltmètre indique 24V :

Le transformateur délivre sa tension de secondaire, il faut poursuivre les mesures pour trouver la panne. Passons à la mesure suivante...

OFPPT/DRIF 52/155

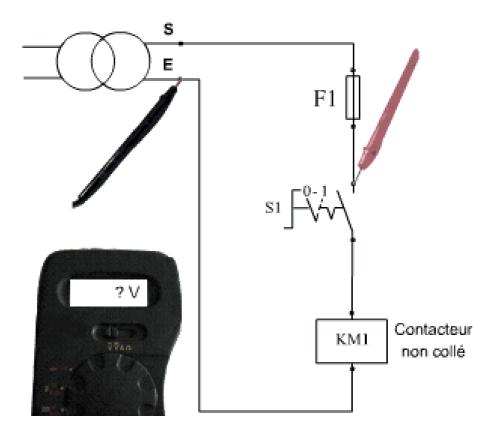


Le potentiel 24V n'arrive pas à la borne d'entrée du porte fusible. Le fil électrique ne joue pas son rôle de conducteur. On a surentraîné pincé l'isolant en réalisant le raccordement ou alors le conducteur est cassé dans sa gaine.

Le voltmètre indique 24V :

La jonction est correctement réalisée, il faut poursuivre les mesures pour trouver la panne. Passons à la mesure suivante...

OFPPT/DRIF 53/155



Le potentiel 24V n'arrive pas à la borne de sortie du porte fusible. Le fusible est grillé. Il y a du avoir un court-circuit. Il faut vérifier l'ensemble des connexions pour trouver celle qui a causé ce court-circuit.

Le voltmètre indique 24V :

Le fusible conduit le courant, il n'est donc pas grillé, il faut poursuivre les mesures pour trouver la panne. Passons à la mesure suivante...

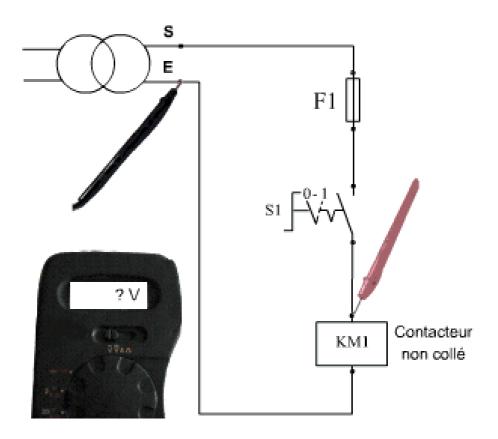
OFPPT/DRIF 54/155

Le potentiel 24V n'arrive pas à la borne d'entrée du commutateur marche arrêt. Le fil électrique ne joue pas son rôle de conducteur. On a sûrement pincé l'isolant en réalisant le raccordement ou alors le conducteur est cassé dans sa gaine.

Le voltmètre indique 24V :

La jonction est correctement réalisée, il faut poursuivre les mesures pour trouver la panne. Passons à la mesure suivante...

OFPPT/DRIF 55/155

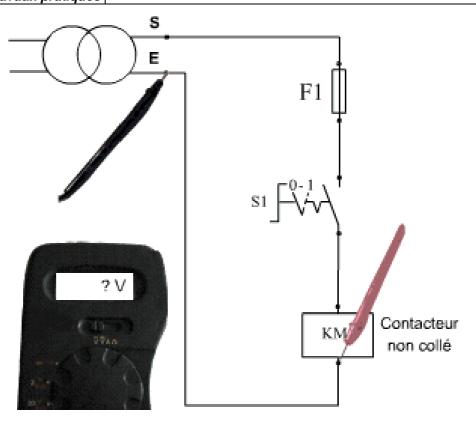


Le potentiel 24V n'arrive pas à la borne dde sortie du commutateur marche arrêt. Le commutateur est donc ouvert ! Il suffit de le remettre sur la position marche pour redémarrer le système.

Le voltmètre indique 24V :

Le commutateur est sur la bonne position, il faut poursuivre les mesures pour trouver la panne. Passons à la mesure suivante...

OFPPT/DRIF 56/155



Le potentiel 24V n'arrive pas à la borne A1 du contacteur. Le fil électrique ne joue pas son rôle de conducteur. On a sûrement pincé l'isolant en réalisant le raccordement ou alors le conducteur est cassé dans sa gaine.

Le voltmètre indique 24V :

La jonction est correctement réalisée, il faut poursuivre les mesures pour trouver la panne. Passons à la mesure suivante...

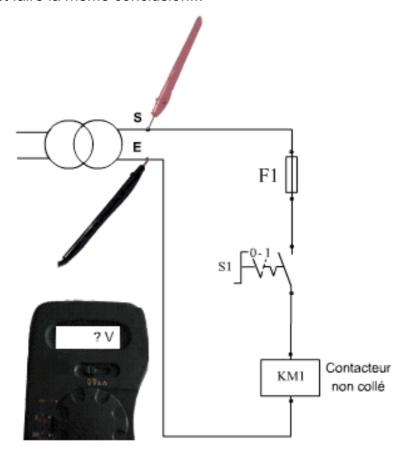
OFPPT/DRIF 57/155

La jonction entre E et la borne A2 est correctement réalisée. Le contacteur est donc défectueux, il faut vérifier sa bobine.

Le voltmètre indique 24V :

La jonction entre E et la borne A2 n'est pas correctement réalisée. Le fil électrique ne joue pas son rôle de conducteur. On a sûrement pincé l'isolant en réalisant le raccordement ou alors le conducteur est cassé dans sa gaine.

Comme vous l'avez constaté, nous venons de trouver une manière simple et efficace de trouver l'élément incriminé dans la panne. Il suffit de garder un point de référence (ici le point E avec la fiche noire) et de déplacer la fiche rouge de point en point jusqu'à déceler la panne.


Malheureusement cette méthode peut devenir très pénible quand on a à faire à des lignes qui comportent plusieurs éléments en série...

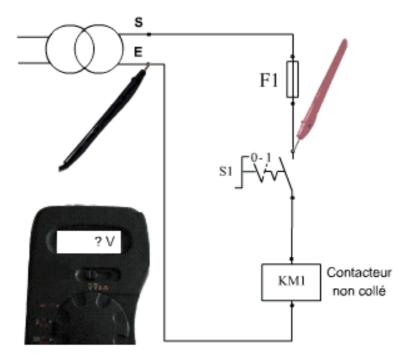
OFPPT/DRIF 58/155

Amélioration de la méthode

Pour réduire le nombre de mesure à effectuer, nous allons améliorer la méthode...

Pour cela, nous allons commencer par réaliser la même première mesure que précédemment et faire la même conclusion...

Le voltmètre indique 0V :


Le transformateur ne délivre pas sa tension de secondaire. La panne se situe surrement au primaire du transformateur ou alors c'est le transformateur lui même qui est défectueux. Voilà pourquoi le contacteur ne colle pas.

Le voltmètre indique 24V :

Le transformateur délivre sa tension de secondaire, il faut poursuivre les mesures pour trouver la panne. Passons à la mesure suivante...

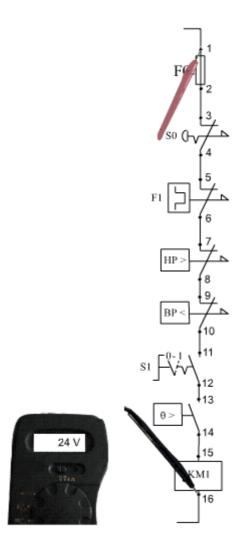
OFPPT/DRIF 59/155

La mesure suivante va consister à réaliser une mesure au milieu du circuit.

Le voltmètre indique 0V :

Cela signifie que de la borne E à la fiche rouge le circuit se comporte comme un conducteur puisqu'on retrouve le potentiel 0V en haut de l'interrupteur. La panne se situe entre S et la borne d'entrée du commutateur...

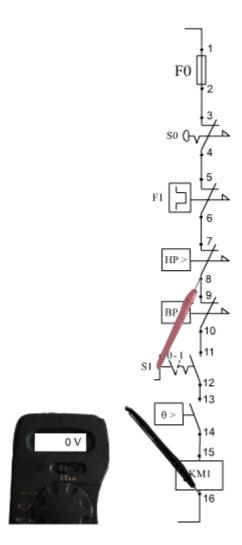
Le voltmètre indique 24V :


Cela signifie que le potentiel 24V est conduit jusqu'à la fiche rouge, le circuit entre S et la borne d'entrée du commutateur se comporte comme un conducteur... La panne se situe donc entre la borne d'entrée du commutateur et la borne E du transformateur...

Cette méthode de dépannage est basée sur les mesures par milieux successifs. On dit qu'on sonne le circuit par moitié ce qui permet de mettre hors de cause une moitié de circuit à chaque mesure.

OFPPT/DRIF 60/155

Exemple:

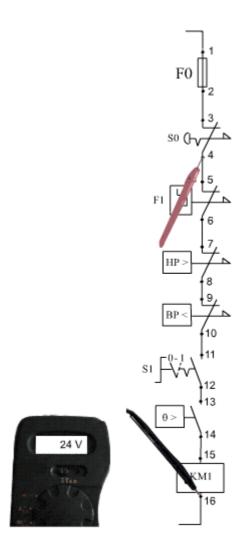

Prenons pour exemple le schéma d'une régulation thermostatique. Le contacteur refuse de s'enclencher. Trouvons la panne en appliquant cette nouvelle méthode...

En mesurant entre 1 et 16, on trouve une tension de 24V, ce qui signifie que le circuit de commande est toujours alimenté. On peut donc rechercher la panne au voltmètre. Le point 1 est au potentiel 24V et le 16 au potentiel 0V. Sur ce schéma est repéré 16 points, pour la prochaine mesure, il convient donc de déplacer la fiche rouge du voltmètre afin de mettre hors cause une moitié de circuit...

Plaçons notre fiche rouge au nouveau point de mesure 8 (qui correspond au milieu du circuit) et laissons notre fiche noire de référence sur le point 16.

OFPPT/DRIF 61/155

Cette fois la mesure nous donne un résultat de 0V...


Cela signifie qu'il n'y a pas de différence de potentiel entre le point 16 et le point 8. Entre ces deux point les appareils se comportent comme des conducteurs et donc il n'y a aucune interruption du circuit dans cette partie.

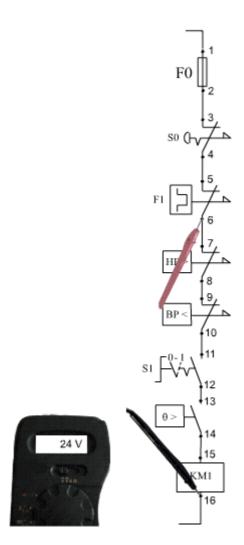
Cette mesure nous permet d'affirmer que tous les éléments entre 8 et 16 sont hors de cause...

La panne se situe donc entre 1 et 8...

Si on coupe ce nouveau circuit en deux pour réaliser notre prochaine mesure il faut déplacer la fiche rouge sur le point 4...

OFPPT/DRIF 62/155

Cette fois la mesure nous donne un résultat de 24V...


Cela signifie qu'il n'y a pas de différence de potentiel entre le point 1 et le point 4. Entre ces deux point les appareils se comportent comme des conducteurs et donc il n'y a aucune interruption du circuit dans cette partie.

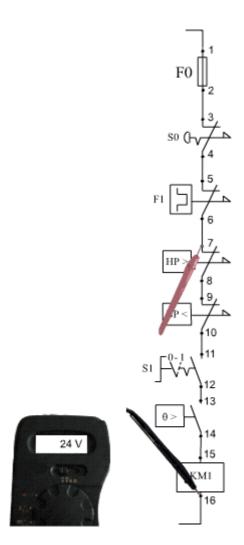
Cette mesure nous permet d'affirmer que tous les éléments entre 1 et 4 sont hors de cause...

La panne se situe donc entre 4 et 8...

Si on coupe ce nouveau circuit en deux pour réaliser notre prochaine mesure il faut déplacer la fiche rouge sur le point 6...

OFPPT/DRIF 63/155

Cette fois la mesure nous donne un résultat de 24V...


Cela signifie qu'il n'y a pas de différence de potentiel entre le point 1 et le point 6. Entre ces deux point les appareils se comportent comme des conducteurs et donc il n'y a aucune interruption du circuit dans cette partie.

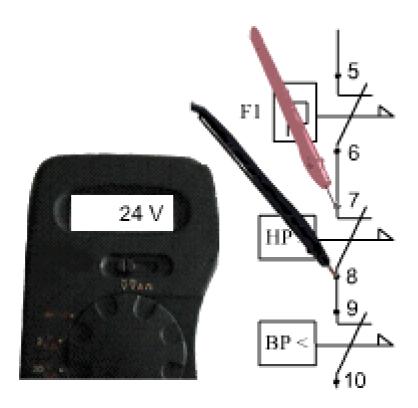
Cette mesure nous permet d'affirmer que tous les éléments entre 4 et 6 sont hors de cause...

La panne se situe donc entre 6 et 8...

Il ne reste plus qu'à mesurer en 7 pour savoir si conducteur 6-7 ou le pressostat HP est incriminé!

OFPPT/DRIF 64/155

Cette fois la mesure nous donne encore un résultat de 24V...


Cela signifie qu'il n'y a pas de différence de potentiel entre le point 1 et le point 7.

Le conducteur 6-7 est hors de cause...

OFPPT/DRIF 65/155

C'est donc forcement le pressostat HP qui a coupé le circuit !

On peut vérifier en plaçant les fiches du voltmètre sur ses bornes...

Cette mesure confirme notre résultat en montrant la coupure du circuit...

Il resterait à présent à trouver la raison de cette coupure pour pouvoir terminer le dépannage!

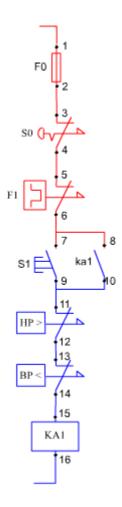
OFPPT/DRIF 66/155

Cas d'une auto-alimentation :

Un voltmètre dont l'une des deux fiches est à l'air libre indique 0V.

Pourtant la fiche rouge est en contact avec un potentiel de 24V. Le 0V affiché par le voltmètre indique dans le cas présent qu'une des 2 fiches mesure une absence de potentiel...

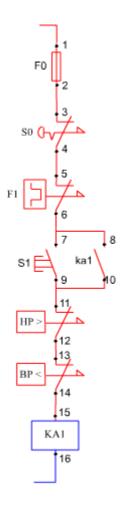
Il convient alors d'être extrêmement prudent pour la suite du cours :


Si le voltmètre indique 24V, cela signifie à coup sur qu'une des fiches est sur une phase et que l'autre sur un neutre.

Si le voltmètre indique 0V, on doit envisager quatre solutions possibles :

- Les fiches sont entre 2 phases identiques
- Les fiches sont entre 2 neutres
- L'une des fiches est sur une phase et l'autre mesure une absence de potentiel (comme sur le schéma au dessus)
- L'une des fiches est sur un neutre et l'autre mesure une absence de potentiel
 Le cas où le voltmètre mesure une absence de potentiel sur un circuit est celui où une
 partie du circuit ne se retrouve ni en contact avec une phase, ni en contact avec un neutre.
 C'est ce qui peut arriver dans une auto-alimentation par exemple.

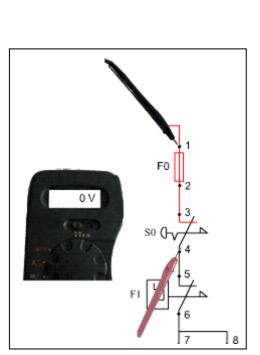
OFPPT/DRIF 67/155

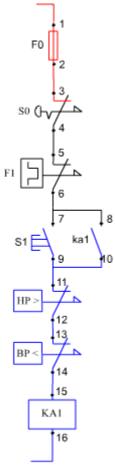

Fonctionnement normal:

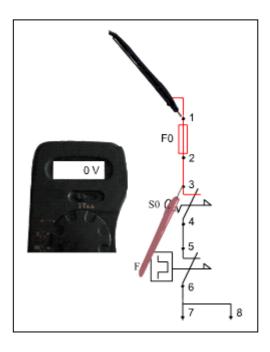
Quand l'installation est au repos, si aucun éléments n'est en défaut alors le potentiel de la phase 24V est repéré en rouge et celui du neutre 0V en bleu.

OFPPT/DRIF 68/155

Si on appuie sur le bouton poussoir, le repérage de potentiel devient alors...

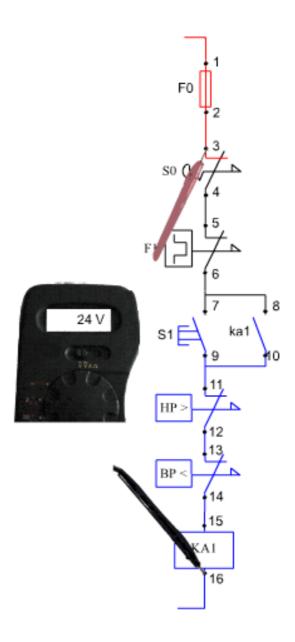

Quand l'installation est démarrée le potentiel de la phase arrive au point 15 qui correspond à la borne A1 de la bobine du contacteur auxiliaire et le neutre vient jusqu'au point 16 qui correspond à la borne A2 du contacteur auxiliaire. Comment va se comporter ce schéma en cas de défaut entre les points 1 et 8 ou entre les points 9 et 16 ?


Défaut sur la phase : l'arrêt d'urgence est frappé

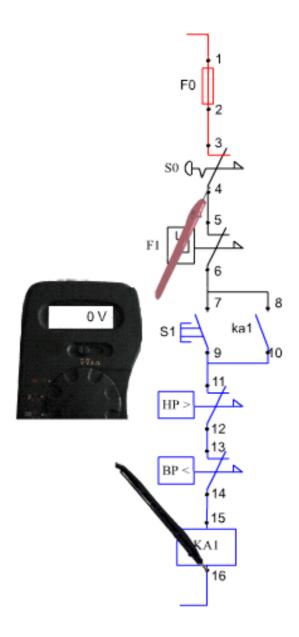

OFPPT/DRIF 69/155

En appuyant sur S1, le contacteur KA1 refuse de coller, imaginons que l'arrêt d'urgence soit déclenché...

Si S0 est déclenché, alors les points 4, 5, 6, 7 et 8 se retrouvent isolés de la phase et du neutre. Dans ce cas toute mesure qui prendrait ces points en référence indiquerait 0V. En prenant le point 1 comme référence de mesure, il est impossible de trouver la panne :


OFPPT/DRIF 70/155

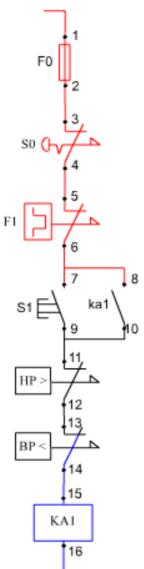
Dans ce cas le voltmètre indique 0V qui signifie différence de potentiel nulle. Dans ce cas le voltmètre indique 0V qui signifie absence de potentiel à une fiche.

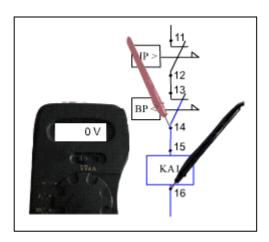

Une conclusion active pourrait laisser supposer la continuité alors qu'elle n'est pas présente

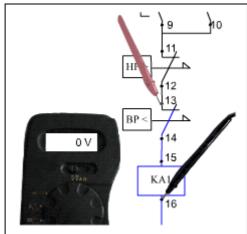
Mais comment procéder alors ?

Pour tester le circuit des points 1 à 8, il faut prendre le neutre comme référence, c'est à dire le point 16 :

OFPPT/DRIF 71/155

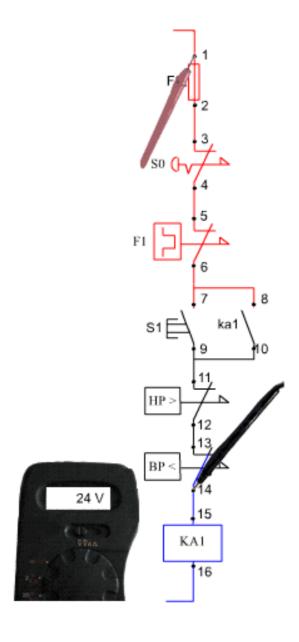

En testant entre 3 et 16, on obtient 24V, ce qui prouve que le courant arrive jusqu'au point 3. En testant entre 4 et 16, on obtient 0V, le courant ne parvient pas au point 4. L'arrêt d'urgence S0 est donc frappé.

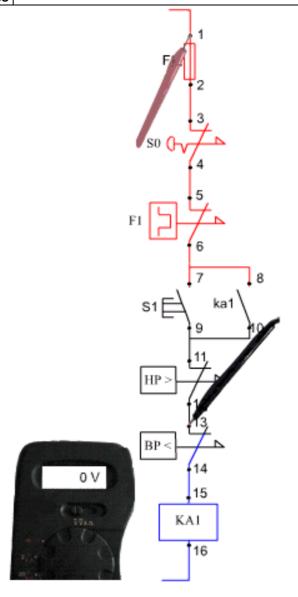

Défaut sur le neutre : le pressostat BP est déclenché


OFPPT/DRIF 72/155

En appuyant sur S1, le contacteur KA1 refuse de coller, imaginons que le pressostat BP soit déclenché...

Si le BP est déclenché, alors les points de 9 à 13 se retrouvent isolés de la phase et du neutre. Dans ce cas toute mesure qui prendrait ces points en référence indiquerait 0V. En prenant le point 16 comme référence de mesure, il est impossible de trouver la panne :




OFPPT/DRIF 73/155

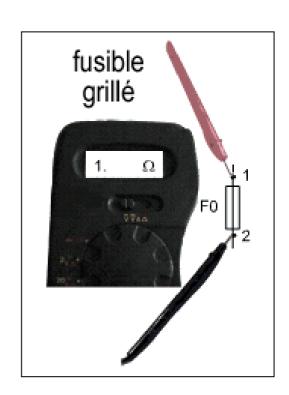
Dans ce cas le voltmètre indique 0V qui signifie différence de potentiel nulle. Dans ce cas le voltmètre indique 0V qui signifie absence de potentiel à une fiche.

Pour tester le circuit des points 9 à 16, il faut prendre la phase comme référence, C'est à dire le point 1 :

OFPPT/DRIF 74/155

En testant entre 1 et 14, on obtient 24V, ce qui prouve que le neutre remonte jusqu'au Point 14. En testant entre 1 et 13, on obtient 0V, le neutre ne remonte pas jusqu'au Point 13.

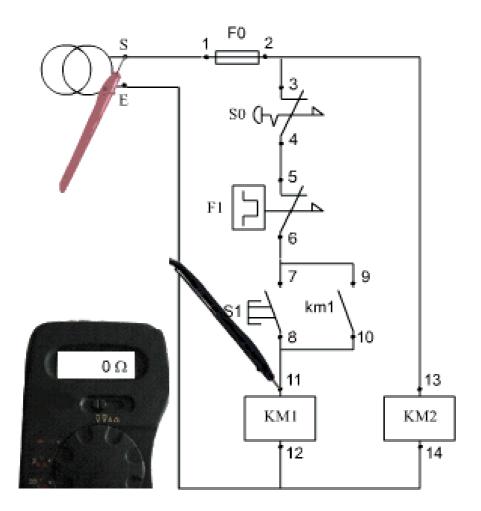
Le pressostat BP est donc déclenché.


OFPPT/DRIF 75/155

Dépannage à l'ohmmètre :

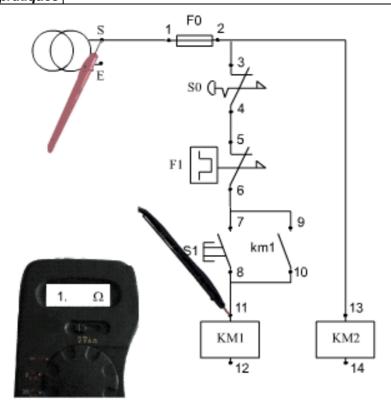
Avant de commencer un dépannage à l'ohmmètre, il faut commencer par vérifier que le circuit à dépanner est hors tension sous peine de détériorer l'ohmmètre.

Un ohmmètre sert à vérifier la résistance électrique et donc la continuité d'un circuit. Prenons comme exemple un fusible :

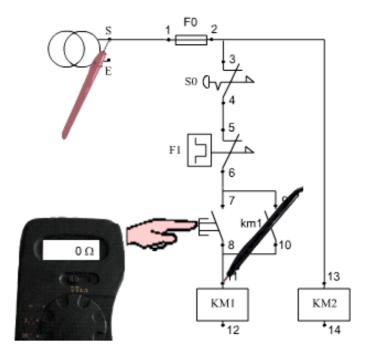

- \triangleright Le 0 Ω nous informe de la continuité électrique du fusible, il est donc OK.
- \triangleright Le 1 Ω nous informe du défaut de continuité électrique du fusible, il est donc grillé.

OFPPT/DRIF 76/155

Le dépannage à l'ohmmètre est surtout utilisé lors du câblage des platines électriques.


Il faut dans un premier temps ne pas réaliser les retours de neutre pour pouvoir tester les lignes :

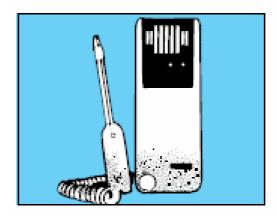
Prenons comme exemple le test du circuit suivant avec et sans les retours de neutre...



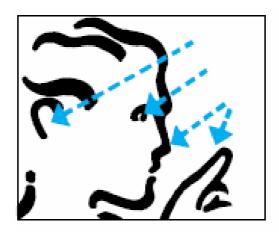
Avec les retours de neutre il y a continuité entre S et 11, pourtant le bouton poussoir est ouvert ainsi que le contact de km1.

OFPPT/DRIF 77/155

Sans les retours de neutre il n'y a plus continuité entre S et 11, en appuyant sur le bouton poussoir, la continuité est retrouvée :


OFPPT/DRIF 78/155

Dépannage des installations frigorifiques :


Remarques générales :

Le module présente les défauts rencontrés couramment sur les petites installations simples.

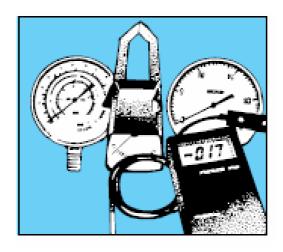
Il faut ajouter que la description des défauts, causes possibles, interventions et effets pour l'installation s'applique aussi aux installations plus complexes. Toutefois, ces installations peuvent présenter d'autres défauts qui sortent du cadre de ce guide. Les défauts des régulateurs électroniques n'entrent pas non plus en ligne de compte.

Avec un peu d'expérience, certains défauts se constatent directement. Il suffit d'utiliser la vue, l'ouie, le toucher et même l'odorat. D'autres par contre ne sont détectés que par des instruments de mesure.

OFPPT/DRIF 79/155

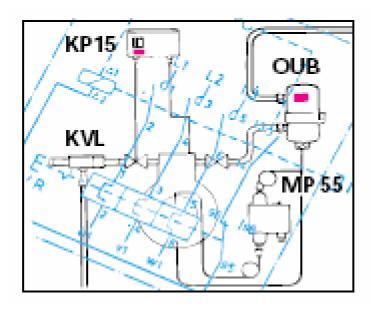
Résumé de Théorie et	Entretien et dépannage d'une installation frigorifique
(-iiide de travally praticiles	3 4

La section "Dépannage" de ce module est divisée en deux parties :


> La première ne présente que les défauts constatés directement en décrivant les symptômes,

Leurs causes possibles et les effets pour l'installation

> La seconde partie étudie à la fois ce type de défauts et les défauts d'instruments de mesure.


OFPPT/DRIF 80/155

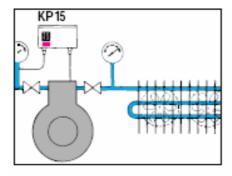
On y explique les symptômes, leurs causes possibles et les interventions à effectuer.

Connaissance de l'installation

Avant d'entamer le dépannage, il est important d'avoir une bonne idée de la conception, du fonctionnement et des commandes électriques et mécaniques de l'installation frigorifique. Si on ne connaît pas l'installation, il faut étudier aussi le schéma des conduites, le schéma développé ainsi que la disposition physique du circuit (tuyauterie, position des composants et systèmes éventuellement raccordés tels que tours de refroidissement ou circuits de saumure).

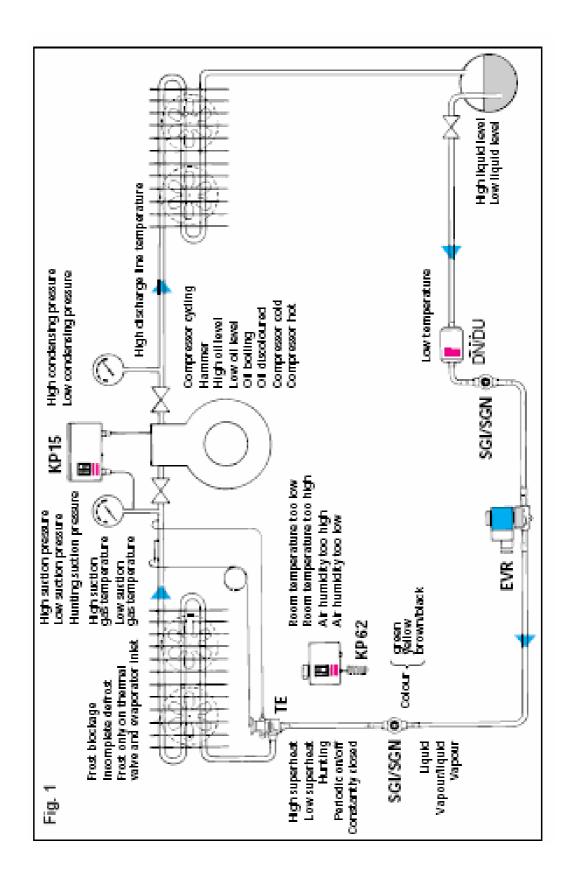
OFPPT/DRIF 81/155

Connaissance théorique

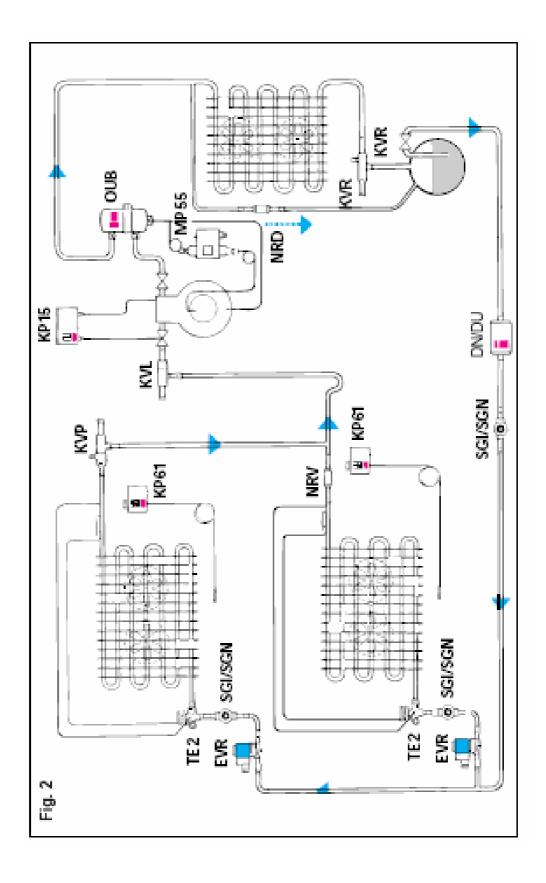

Il faut en outre un certain bagage théorique pour pouvoir localiser les défauts, détecter les mauvais fonctionnements et intervenir. Pour pouvoir dépanner directement les installations frigorifiques simples, il faut donc posséder

Des connaissances approfondies sur:

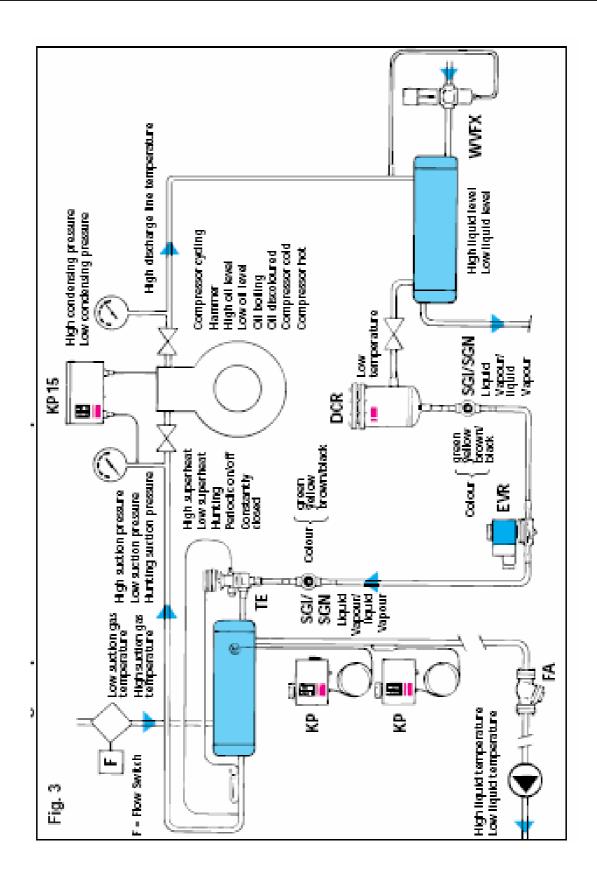
- > la conception, le fonctionnement et les caractéristiques de tous les composants
- les instruments et techniques de mesure nécessaires
- les processus techniques de froid de toute l'installation
- l'influence des conditions ambiantes sur le fonctionnement de l'installation
- les fonctions et réglages des automatismes ainsi que du matériel de sécurité;
- les dispositions législatives et réglementaires concernant la sécurité et la révision des installations frigorifiques. (Liste non limitative.)


Avant de procéder à la description des défauts et problèmes rencontrés sur les installations frigorifiques, nous présentons succinctement les instruments de mesure principaux utilisés lors du dépannage.

Pour l'étude des défauts présentés dans les deux parties du guide, nous utilisons les installations illustrées par les schémas fig. 1, 2 et 3. L'examen suit la tuyauterie dans le sens du processus et nous expliquons au fur et à mesure les symptômes probables. Nous partons de la sortie refoulement du compresseur et suivons les flèches.


OFPPT/DRIF 82/155

Installation frigorifique avec refroidisseur d'air et condenseur refroidi à l'air



OFPPT/DRIF 83/155

Installation frigorifique avec deux refroidisseurs d'air et un condenseur refroidi à l'air

Installation frigorifique avec refroidisseur de liquide et condenseur refroidi à l'eau

OFPPT/DRIF 85/155

Diagnostic des défauts des installations frigorifiques :

Défaut visible	Effet pour l'installation
Condenseur refroidi à l'air	
a) Encrassement (graisse, poussière, sciure de bois feuilles mortes, par exemple).	Les défauts a), b), c), d) et e) entraînent :
[Manque d'entretien]	 une augmentation de la pression de condensation une réduction de la production de froid
b) Le ventilateur ne fonctionne pas.	 une augmentation de la consommation d'énergie
[Moteur défectueux]	
[Disjoncteur coupé]	Pour un condenseur refroidi à l'air,
c) Le ventilateur tourne dans le mauvais sens.	la différence entre la température de l'air d'entrée et la température de condensation
[Erreur de montage]	doit être comprise entre 10 et 20°C, aussi
d) Hélices du ventilateur endommagées	près de 10 que possible.
e) Nervures déformées [traitement rude]	
Condenseur refroidi à l'eau	
Avec voyant, voir sous "Bouteille accumulatrice"	Pour un condenseur refroidi à l'eau,
Bouteille accumulatrice avec voyant	la différence entre la température de l'eau
	d'entrée et la température de condensation
Niveau de fluide trop bas.	doit être comprise entre 10 et 20°C, aussi
[Manque de réfrigérant dans le circuit]	près de 10 que possible.
[Manque de remgerant dans le olledit]	Bulles de vapeur dans la conduite.
[Evaporateur trop plein]	
	Pression BP basse ou démarrages futiles.
[Condenseur trop plein]	Dout Atro processor LID trop floors
Niveau de fluide trop haut.	Peut-être pression HP trop élevée.
	Peut-être pression HP trop élevée.
[Circuit trop plein]	

OFPPT/DRIF 86/155

Résumé de Théorie et Guide de travaux pratiques	Entretien et dépannage d'une installation frigorifiqu
Défaut visible	Effet pour l'installation
Vanne d'arrêt bouteille	
	Installation arrêtée par le pressostat basse pression.
a) Vanne fermée.	Vapeur ou bulles de vapeur dans conduite de liquide.
	Pression BP basse ou démarrages futiles.
b) Vanne partiellement ouverte.	
	Les défauts a), b) et c) entraînent
Conduite de liquide	perte de charge dans la conduite de liquide.
	de la vapeur dans la conduite de liquide.
a) Trop étroite.	
[Erreur de dimensionnement]	
b) Trop longue.	

[Erreur de dimensionnement]

[Erreur de montage]

c) Coudes brusques ou enfoncements.

OFPPT/DRIF 87/155

Résumé de Théorie et
Guide de travaux pratiques

Déshydrateur

Formation de rosée ou de givre à la surface.

[Filtre partiellement colmaté côté entrée]

Voyant

a) Teinte jaune.[Humidité dans le circuit]

b) Teinte brune.

[Impuretés (particules) dans le circuit]

c) Présence de vapeur propre.[Manque de fluide dans le circuit]

[Vanne conduite de liquide fermée]

[Colmatage total du déshydrateur, par ex.]

d) Présence de liquide et de bulles de vapeur

[Manque de fluide dans le circuit]
[Vanne de la conduite de liquide
partiellement fermée]
[Colmatage partiel du déshydrateur, par

exemple].

[Manque de sous-refroidissement].

Vapeur dans la conduite de liquide

Il y a un risque de :

- > Formation d'acide
- Corrosion
- Détérioration du moteur
- Givre dans le détendeur
- Il y a un risque d'usure des pièces mobiles et de colmatage des vannes et des filtres

Arrêt par le pressostat basse pression ou démarrages futiles

Arrêt par le pressostat basse pression

Arrêt par le pressostat basse pression

Valable pour tous les défauts d) :

Démarrages futiles ou fonctionnement à basse pression d'aspiration

OFPPT/DRIF 88/155

Résumé	de Théor	ie et
Guide de	travaux	pratiques

Détendeur thermostatique

 a) Détendeur thermostatique très givré, évaporateur givré seulement près du détendeur.

Fonctionnement à basse pression d'aspiration et démarrages futiles causés par le pressostat basse pression.

[Filtre à impuretés partiellement colmaté]

[Perte d'une partie de la charge du bulbe]

[Défauts déjà mentionnés donnant des bulles

de vapeur dans la conduite de liquide]

 b) Détendeur thermostatique sans égalisation de pression externe, évaporateur avec distributeur de liquide.

[Erreur de dimensionnement ou de montage]

 c) Détendeur thermostatique avec égalisation de pression externe,
 conduite non montée.

[Erreur de montage]

d) Bulbe pas bien serré.

[Erreur de montage]

e) Contact bulbe- conduite inadéquat.

[Erreur de montage]

f) Bulbe placé dans un débit d'air.

[Erreur de montage]

Les défauts b) et c) entraînent :

Fonctionnement à basse pression d'aspiration et démarrages futiles causés par le pressostat basse pression.

Les défauts d), e) et f) entraînent :

Evaporateur trop plein et peut-être migration de réfrigérant liquide jusqu'au compresseur, d'où risque d'avarie

OFPPT/DRIF 89/155

Résumé de Théorie et	
Guide de travaux pratiques	

Refroidisseur d'air

a) Surface d'évaporation givrée
 seulement côté entrée,
 détendeur thermostatique très givré

[Défaut du détendeur thermostatique]

[Défauts déjà mentionnés donnant de la vapeur dans la conduite de liquide]

b) Avant bloqué par le givre.

[Dégivrage inexistant, défectueux ou mal réglé]

c) Ventilateur arrêté.

[Moteur défectueux ou disjoncteur coupé]

- d) Hélices du ventilateur défectueuses.
- e) Ailettes déformées. d'évaporation doit être comprise entre 2 et 8°C aussi près

[Traitement rude]

Le défaut a) entraîne :

Une surchauffe excessive à la sortie de l'évaporateur et fonctionnement à une pression d'aspiration basse en moyenne.

Les défauts a), b), c), d) et e) entraînent : Un fonctionnement à une pression d'aspiration basse en moyenne

- > une production de froid réduite,
- > une consommation d'énergie accrue.

Pour les évaporateurs à détendeur thermostatique,

La différence entre la température de l'air d'entrée et la température d'évaporation doit être comprise entre 6 et 15°C, aussi près de 6 que possible.

OFPPT/DRIF 90/155

Résumé de Théorie et	
Guide de travaux pratiques	

Refroidisseur de liquide

a) Bulbe du détendeur thermostatique mal serré.

[Erreur de montage]

b) Détendeur thermostatique sans égalisation de pression externe sur refroidisseur de liquide avec grande perte de charge (refroidisseur coaxial, par exemple).

[Erreur de dimensionnement ou de montage]

c) Détendeur thermostatique avec égalisation de pression externe, conduite non montée.

[Erreur de montage]

Evaporateur trop plein et peut-être migration de réfrigérant liquide jusqu'au compresseur, d'où risque d'avarie.

Les défauts b) et c) entraînent :

- une surchauffe excessive à la sortie de l'évaporateur.
- un fonctionnement à une pression d'aspiration moyenne basse.
- > une production de froid réduite.
- > une consommation d'énergie accrue.

Pour les évaporateurs à détendeur thermostatique,

la différence entre la température de l'air d'entrée et la température d'évaporation doit être entre 6 et 15°C, aussi près de 6 que possible.

Pour les évaporateurs à régulation de niveau,

La différence entre la température de l'air d'entrée et la température d'évaporation doit être entre 2 et 8°C aussi près de 2 que possible.

OFPPT/DRIF 91/155

Défaut visible	Effet pour l'installation
Conduite d'aspiration	
a) Givrage anormal.	Evaporateur trop plein et peut-être migration de
[Surchauffe du détendeur thermostatique trop faible]	réfrigérant liquide jusqu'au compresseur avec risque d'avarie.
b) Coudes brusques et/ou enfoncements.	Pression d'aspiration trop basse ou démarrages futiles.
[Défaut de montage]	
	Peut-être migration de réfrigérant liquide jusqu'au
Régulateur sur conduite d'aspiration	compresseur avec un risque d'avarie.
Rosée ou givre en aval du régulateur mais pas en amont.	
[Surchauffe du détendeur thermostatique trop faible]	

Résumé de Théorie et
Guide de travaux pratiques

COMPRESSEUR

a) Rosée ou givre côté entré compresseur.

[Surchauffe à la sortie trop faible]

b) Niveau d'huile trop bas dans le carter.

[Manque d'huile dans le circuit]

[Accumulation d'huile dans le circuit]

c) Niveau d'huile trop haut dans le carter.

[Trop-plein d'huile]

[Mélange de réfrigérant dans l'huile, compresseur:trop froid]

[Mélange de réfrigérant dans l'huile, surchauffe sortie compresseur trop faible]

d) Montée d'huile dans le carter lors de la mise en route.

[Mélange de réfrigérant dans l'huile, compresseur trop froid]

e) Montée d'huile dans le carter en fonctionnement.

[Mélange de réfrigérant dans l'huile, surchauffe sortie compresseur trop faible]

Migration de réfrigérant liquide jusqu'au compresseur, avec risque d'avarie.

Installation arrêtée par un éventuel pressostat différentiel d'huile. Usure des pièces mobiles.

Coups de bélier dans les cylindres avec risque d'avarie du compresseur

- Soupape cassée
- > Autres pièces mobiles cassées
- > Surcharge mécanique

Coups de bélier, voir sous c).

Coup s de bélier, voir sous c).

OFPPT/DRIF 93/155

Défaut visible	Effet pour l'installation
Zone de conservation	
a) Viandes desséchées, légumes gâtés.	
	Mauvaise qualité des denrées ou gaspillage.
[Humidité trop basse probablement à cause d'un	
évaporateur trop petit]	
	Risque de dommage corporel.
b) Portes peu étanches ou illégales.	
c) Système d'alarme inexistant ou	
défectueux.	Risque de dommage corporel.
d) Plaques "Sortie" inexistantes ou	
défectueuses.	
En ce qui concerne les défauts b), c) et d) :	Risque de dommage corporel.
[Manque d'entretien ou erreur de dimensionnement]	
e) Matériel d'alarme défectueux	Risque de dommage corporel.
[Erreur de dimensionnement]	

Défauts généraux

a) Gouttes d'huiles sous les assemblages et/ou taches d'huile par terre.

[Fuites probables près des assemblages]

Fuites d'huile ou de réfrigérant.

b) Fusibles grillés.

[Surcharge de l'installation ou court-circuit]

> Installation arrêtée.

c) Disjoncteurs coupés.

[Surcharge de l'installation ou court-circuit]

Installation arrêtée.

d) Pressostats, thermostats, etc. ouverts.

[Erreur de réglage]

> Installation arrêtée.

[Matériel défectueux]

Installation arrêtée.

Défauts détectés au toucher	Effets pour l'installation
Electrovanne	
Vanne plus froide que la conduite en amont.	
[Vanne bloquée, partiellement ouverte]	Vapeur dans la conduite de liquide
Même température que conduite en amont.	
[Vanne fermée]	Installation arrêtée par pressostat basse pression.

OFPPT/DRIF 95/155

Résumé de Théorie et Guide de travaux pratiques	Entretien et dépannage d'une installation frigorifique
<u>Déshydrateur</u>	
Déshydrateur plus froid que conduite amont	t.
[Entrée partiellement colmatée]	Vapeur dans la conduite de liquide

Défauts détectés à l'oreille	Effets pour l'installation
Régulateurs sur conduite d'aspiration	
Le régulateur de pression d'évaporation ou un autre régulateur émet un sifflement.	
[Régulateur trop grand (erreur de dimensionnement)]	Fonctionnement instable.
Compresseur	
a) A-coups lors de la mise en route.	
[Montée d'huile]	Coups de bélier.Risque d'avarie de compresseur.
b) A-coups en fonctionnement.	raisque à avaire de compresseur.
[Montée d'huile]	Coups de bélier.Risque d'avarie de compresseur.
[Usure de pièces mobiles]	rasque a avane de compresseur.
Zone de conservation	
Matériel d'alarme défectueux.	
[Manque d'entretien]	Risque de dommage corporel.

OFPPT/DRIF	96/155
OTT T/DIM	70/133

Résumé de Théorie et
Guide de travaux pratiques

Défauts détectés à l'odeur	Effets pour l'installation
Zone de conservation	
Mauvaise odeur émise par les viandes conservées.	
[Humidité de l'air trop élevée, évaporateur trop grand ou charge trop faible]	Mauvaise qualité des denrées ou gaspillage.

II. Dépannage :

(Les symptômes, les causes possibles et les interventions)

Comme déjà dit, ce module est divisé en deux parties.

Dans la seconde partie nous étudierons les défauts courants constatés avec ou sans instruments de mesure.

OFPPT/DRIF 98/155

Sommaire des Anomalies

ANOMALIE	
Pression de condensation trop élevée	
Pression de condensation trop basse	
Pression de condensation instable	
Température de refoulement trop élevée	
Température de refoulement trop basse	
Niveau bouteille accumulatrice trop bas	
Niveau bouteille accumulatrice trop élevé	
Production de froid trop faible	
Déshydrateur froid	
Indicateur d'humidité jaune	
Indicateur d'humidité brun ou noir	
Bulles de vapeur dans voyant en amont du détendeur	
Evaporateur bloqué par le givre.	
Evaporateur givré seulement près du détendeur.	
Air trop humide dans la zone de conservation	
Température ambiante trop basse	
Pression d'aspiration trop élevée	
Pression d'aspiration trop basse	
Pression d'aspiration instable	
Température du gaz d'aspiration trop élevée	
Température du gaz d'aspiration trop basse	
Compresseur démarre trop souvent	
Température dans la conduite de refoulement trop élevée	
Compresseur trop froid	
Compresseur trop chaud	
A-coups compresseurs	
Niveau d'huile trop élevée dans carter du compresseur	
Niveau d'huile trop bas dans carter du compresseur	
Montée d'huile, compresseur	
Huile teintée, compresseur	
Le compresseur ne démarre pas	
Le compresseur ne s'arrête pas	

OFPPT/DRIF	99/155

Symptôme	Cause possible	Intervention
	a) Présence d'air ou de gaz non	Purger le condenseur avec une
Pression de condensation trop	condensable dans le circuit de	machine de <i>récupération</i> .
élevée.	réfrigérant.	
		Installer un condenseur plus
Condenseurs refroidis par air et	b) Surface de condensation trop	grand.
par eau.	petite.	
		Vidanger une partie du réfrigérant
	c) Charge de réfrigérant trop	avec une machine de
	grande pour le circuit	récupération.
	(accumulation de liquide dans le	
	condenseur).	Eliminer du réfrigérant jusqu'à une
		pression normale.
	d) Pression de condensation	
	réglée trop haut.	S'assurer que le voyant est
		toujours plein.
		Régler la pression correcte.
Pression de condensation trop	a) Saletés à la surface	Nettoyer le condenseur.
élevée.	extérieure du condenseur.	
		Remplacer le moteur et/ou
Condenseurs refroidis par	b) Moteur du ventilateur	l'hélice.
air.	défectueux ou trop petit, hélices	Eliminer tout obstacle à l'entrée
	défectueuses.	de l'air ou déplacer le condenseur
	c) Entrée d'air trop faible dans	Assurer l'entrée d'air libre ou
	le condenseur	déplacer le condenseur
	d) Température ambiante trop	Inverser le sens de rotation du
	élevée.	moteur du ventilateur.
	e) Débit d'air dans le mauvais	Pour les groupes de
	sens (condenseur).	condensation, s'assurer que le
		débit d'air est dans le sens
	f) Court-circuit entre le côté	condenseur compresseur.
	pression et le côté aspiration du	Installer peut-être une gaine
	ventilateur du condenseur.	adéquate vers l'extérieur.

OFPPT/DRIF 100/155

Guide de travaux pratiques	Entretien et dépannage d'une installation frigorifique		
Symptôme	Cause possible	Intervention	
Pression de condensation trop	a) Température d'eau de	Etablir une température plus	
élevée.	refroidissement trop élevée.	basse.	
Condenseurs refroidis par			
eau.	b) Quantité d'eau trop faible	Augmenter le débit d'eau, en	
		montant peut-être une vanne à	
	c) Dépôt à la face intérieure des	eau pressostatique.	
	conduites d'eau.		
		Nettoyer les conduites d'eau du	
	d) Pompe à eau de	condenseur à l'acide	
	refroidissement défectueuse ou	éventuellement.	
	arrêtée.		
		Chercher la cause, remplacer ou	
		réparer	
		éventuellement la pompe à eau	
		de refroidissement.	
Pression de condensation trop	a) Surface de condensation trop	Placer une régulation de pression	
basse.	grande.	de condensation ou	
		remplacer le condenseur.	
Condenseurs refroidis par	b) Charge de l'évaporateur trop		
air.	faible.	Placer une régulation de pression	
	c) Pression d'aspiration trop	de condensation.	
	basse, due par ex :	Localiser le défaut entre le	
	à un manque de liquide dans	condenseur et le détendeur	
	évaporateur.	thermostatique (voir sous	
	d) Manque d'étanchéité des	"Pression d'aspiration trop	
	vannes d'aspiration et/ou	basse").	
	refoulement du compresseur.		
		Remplacer les clapets.	
	e) Régulateur de pression de	Régler le régulateur de pression	
	condensation réglé trop bas.	de condensation à la pression	
		correcte.	
	f) Bouteille accumulatrice non		
	isolée placée dans une ambiance	Déplacer la bouteille ou l'entourer	
	froide par rapport au condenseur	d'un isolant.	
	(la bouteille agit comme un		
	condenseur).		
	,		

Résumé de Théorie et

OFPPT/DRIF 101/155

Symptôme	Cause possible	Intervention
Pression de condensation trop	a) Température de l'air de	Placer une régulation de la
basse.	refroidissement trop basse.	pression de condensation.
Condenseurs	b) Débit d'air dans le condenseur	Installer un ventilateur moins
refroidis par air.	trop grand.	puissant ou établir une
		commande de la vitesse du
		moteur.
Pression de condensation trop	a) Débit trop fort.	Monter une vanne à eau
basse.		pressostatique ou régler la
	b) Température de l'eau trop	vanne.
Condenseurs	basse.	
refroidis par eau.		Réduire le débit d'eau,
		éventuellement en installant
		une vanne à eau pressostatique.
Pression de condensation	a) Différentiel du pressostat	Régler le différentiel plus bas,
instable	marche/arrêt du ventilateur du	
	condenseur trop grand, d'où	établir une régulation
	risques de réfrigérant dans le	avec vannes (KVD+KVR) ou
	condenseur et vapeur dans la	établir une commande
	conduite de liquide après le	de la vitesse du moteur du
	démarrage du ventilateur.	ventilateur.
	b) Pompage du détendeur	Régler le détendeur
	thermostatique.	thermostatique pour une
		surchauffe plus élevée ou monter
	c) Défaut régulation de pression	un orifice plus petit.
	de	
	condensation par vannes	Installer des vannes plus petites.
	KVR/KVD	
	(orifice trop grand).	Voir sous "Pression d'aspiration
		instable".
	d) Dû à pression d'aspiration	
	instable.	

OFPPT/DRIF 102/155

Symptôme	Cause possible	Intervention
	a) Pression d'aspiration trop	Chercher entre la bouteille et la
Température trop élevée dans la	basse à cause de:	conduite d'aspiration
conduite de		(voir sous "Pression d'aspiration
refoulement	1) Manque de liquide dans	trop basse").
	l'évaporateur.	idem.
	2) Charge de l'évaporateur trop bas.	Remplacer les clapets.
		Supprimer l'échangeur de chaleur
	3) Clapets d'aspiration ou de	ou en installer un
	refoulement non étanche.	plus petit.
	4) Surchauffe excessive dans	Voir sous "Pression de
	l'échangeur de chaleur ou dans	condensation trop élevée".
	l'accumulateur de la	
	conduite d'aspiration.	
	b) Pression de condensation trop	
	élevée.	
Température trop basse dans la	a) Migration de réfrigérant liquide	Détendeurs thermostatiques
conduite de	jusqu'au <i>compresseur</i>	
refoulement		Voir sous "Pression de
	(surchauffe réglée trop bas	condensation trop basse".
	sur le détendeur thermostatique	
	ou bulbe mal placé).	
	b) Pression de condensation trop basse.	

OFPPT/DRIF 103/155

Symptôme	Cause possible	Intervention
	a) Manque de fluide dans le	Chercher la cause (fuites,
Niveau trop bas dans la bouteille	circuit.	évaporateur trop plein),
accumulatrice		éliminer les défauts.
	b) Evaporateur trop plein	Détendeur thermostatique :
		Placer la bouteille avec le
	1) charge trop faible et	condenseur.
	accumulation de liquide dans	
	l'évaporateur.	Condenseur à air:
		établir la régulation de la pression
	2) erreur relative au détendeur	de condensation via une
	thermostatique (surchauffe réglée	commande de la vitesse du
	trop bas, bulbe mal placé, etc.).	moteur du ventilateur,
	c) Accumulation de liquide dans le	
	condenseur parce que la pression	
	de condensation est inférieure à	
	celle de la bouteille accumulatrice	
	(celle-ci étant	
	placée dans une ambiance plus	
	chaude que le condenseur)	
	criadue que le corideriseur)	
Niveau trop élevé dans la	Charge de réfrigérant trop grande	Eliminer une certaine quantité de
bouteille accumulatrice.		réfrigérant en
Production normale de		s'assurant que la pression de
froid.		condensation reste
		normale et le voyant sans vapeur.
Production de froid trop faible.	a) Colmatage partiel d'un	Trouver le composant en cause,
(Eventuellement	composant dans la conduite de	le nettoyer ou le
Démarrages intempestifs.)	liquide.	remplacer.
	b) Défaut du détendeur	Voir le " Détendeurs
	thermostatique	thermostatiques: Dépannage".
	(surchauffe trop grande, orifice	
	trop petit, perte de charge,	
	colmatage partiel, etc.).	

OFPPT/DRIF 104/155

Symptôme	Cause possible	Intervention
Déshydrateur froid,	a) Colmatage partiel du filtre à	Contrôler s'il y a des impuretés
éventuellement embué ou	impuretés du déshydrateur	dans le circuit et le nettoyer si
givré.		nécessaire.
	b) Déshydrateur entièrement ou	
	partiellement saturé d'eau ou	Remplacer le déshydrateur.
	d'acide.	
		Vérifier s'il y a de l'humidité et de
		l'acide dans le circuit et nettoyer si
		nécessaire.
		Remplacer le déshydrateur (filtre
		antiacide), éventuellement à
		plusieurs reprises.
		En cas de forte contamination par
		l'acide:
		vidanger et changer le
		réfrigérant et l'huile et monter un
		déshydrateur avec cartouche
		amovible dans la conduite
		d'aspiration.
Modification de la teinte du voyant	Humidité dans le circuit.	Vérifier si le circuit est étanche.
d'humidité.		
Teinte jaune.		Réparer s'il y a lieu.
		Vérifier s'il y a des traces d'acide
		dans le circuit.
		Remplacer le déshydrateur
		plusieurs fois si nécessaire. Dans
		les cas graves, il est peut-être
		nécessaire de vidanger le
		réfrigérant et l'huile.
Teinte brune ou noire.	Présence de saletés dans le	Nettoyer le circuit selon besoin et
	circuit.	remplacer le
		voyant et le déshydrateur.

OFPPT/DRIF 105/155

Symptôme	Cause possible	Intervention
Refroidisseurs d'air.	a) Dégivrage inexistant ou	Installer un dégivrage ou le régler.
Evaporateur bloqué par le	inefficace.	
givre.		Emballer les denrées ou régler le
	b) Humidité de la zone de	dégivrage.
	conservation trop grande à cause	
	de:	Colmater les fuites et
		recommander de fermer les
	1) denrées sans emballage,	portes.
	2) pénétration d'humidité par	
	les fuites ou une porte ouverte.	
Refroidisseurs d'air.	a) Injection de liquide trop faible à	Voir le " Détendeurs
Evaporateur givré seulement	cause des défauts suivants du	thermostatiques : Dépannage".
près du détendeur	détendeur	
thermostatique	thermostatique :	Voir sous "Bulles de vapeur dans
celui-ci étant très givré.		le voyant"
	1) orifice trop petit,	
	2) surchauffe exagérée,	
	3) perte partielle de la charge du bulbe,	
	4) filtre à impuretés partiellement colmaté.	
	5) Orifice partiellement bouché par la glace.	

OFPPT/DRIF 106/155

Symptôme	Cause possible	Intervention
Refroidisseurs d'air.	Déformation nervures et ailettes.	Redresser les nervures et ailettes
Evaporateur endommagé		en utilisant le peigne spécial.
L'humidité dans la zone de	a) Surface d'évaporation trop	Installer un évaporateur plus petit.
conservation est trop grande à la	grande d'où fonctionnement à	
température ambiante.	haute température d'évaporation	Etablir un contrôle de l'humidité
	et temps de marche courts.	au moyen d'un
		hygrostat, d'un corps chauffant et
	b) Charge de la chambre trop	d'un thermostat de sécurité KP
	basse en hiver, par ex. (temps de	62.
	marche court =	
	déshydratation réduite).	
Humidité trop basse dans la zone	a) Isolation inadéquate de la	Recommander de mieux isoler.
de conservation.	chambre.	
		Recommander de réduire la
	b) Consommation interne	consommation énergétique
	d'énergie importante (éclairage,	interne.
	ventilateurs, par	
	ex.)	Installer un évaporateur plus
		grand.
	c) Surface d'évaporation trop	
	petite d'où temps de marche	
	prolongés à basse	
	température d'évaporation.	

OFPPT/DRIF 107/155

Symptôme	Cause possible	Intervention
Température ambiante trop	a) Défaut du thermostat	Voir le " Thermostats:
basse dans la zone de	d'ambiance.	Dépannage".
conservation.		
	1) Température d'ouverture réglée	Si impératif : établir un chauffage
	trop bas.	électrique avec
		thermostat.
	2) Bulbe mal placé.	
	b) Ambiance très froide.	
Pression d'aspiration trop	a) Compresseur trop petit.	Installer un compresseur plus
élevée.	b) Une ou plusieurs clapets fuient.	puissant.
	c) Régulation de capacité	Remplacer les clapets.
	défectueuse ou mal	
	réglée.	Remplacer, réparer ou ajuster la
		régulation de
	d) Charge de l'installation trop	capacité.
	grande.	
		Recommander une charge moins
	e) Fuite à la vanne du dégivrage à	grande ou installer
	gaz chaud.	un compresseur plus puissant ou
		un régulateur de
		pression de démarrage
		Remplacer la soupape.

OFPPT/DRIF 108/155

Résumé de Théorie et Guide de travaux pratiques	Entretien et dépa	nnage d'une installation frigorifique
Pression d'aspiration trop élevée pour basse température du gaz d'aspiration.	 a) Détendeur thermostatique réglé pour une surchauffe trop faible ou bulbe mal placé. b) Orifice trop grand. c) Conduite de liquide fuit dans l'échangeur de chaleur entre conduites liquide et aspiration. 	Voir Détendeurs thermostatiques: Dépannage". Monter un orifice plus petit. Remplacer l'échangeur de chaleur
Pression d'aspiration trop basse, fonctionnement continu.	Pressostat basse pression mal réglé ou défectueux.	Ajuster ou remplacer le pressostat bas pression par un KP 1 ou un pressostat combiné KP 15.

Résumé de Théorie et Guide de travaux pratiques	Entretien et dépa	nnage d'une installation frigorifique
Symptôme	Cause possible	Intervention
Pression d'aspiration trop	a) Faible charge de l'installation.	Etablir une régulation de capacité
basse, marche normale ou		ou augmenter le
démarrages futiles.	b) Manque de liquide dans	différentiel du pressostat basse
	l'évaporateur car:	pression.
	1) Manque de liquide dans la	Voir sous "Niveau trop bas dans la
	bouteille accumulatrice,	bouteille accumulatrice".
		Voir sous "Bulles de vapeur dans
	2) conduite de liquide trop longue,	le voyant".
	3) conduite de liquide trop étroite,	Voir sous "Bulles de vapeur dans
	3) conduite de liquide trop etroite,	le voyant"
	4) coudes brusques et	lo voyant
	enfoncements dans la	Voir le " Détendeurs
	conduite de liquide,	thermostatiques : Dépannage "
	5) déshydrateur partiellement	Choisir un évaporateur plus
	colmaté,	grand.
	6) défaut d'électrovanne,	Remplacer ou réparer le
		ventilateur.
	7) sous-refroidissement liquide	
	insuffisant,	Remplacer si nécessaire
		l'évaporateur et/ou la
	8) défaut de détendeur.	conduite d'aspiration.
	c) Evaporateur trop petit.	Etablir un dégivrage ou le régler.
	d) Ventilateur de l'évaporateur	
	défectueux.	Augmenter la concentration de
	e) Perte de charge trop	saumure et vérifier le
	importante dans	produit antigel.
	évaporateur et/ou conduite	
	d'aspiration.	Chercher cause et intervenir. Voir
	f) Aucun dégivrage ou dégivrage	"Refroidisseurs
	insuffisant	d'air" et "Refroidisseurs de
	du refroidisseur d'air.	liquide".
	g) Givre dans le refroidisseur à	
	saumure.	Voir sous "Niveau trop bas dans le
	h) Débit d'air ou de saumure	carter".
	insuffisant dans le refroidisseur.	
	i) Accumulation d'huile dans	
	l'évaporateur.	

OFPPT/DRIF 110/155

Résumé de Théorie et Guide de travaux pratiques	Entretien et dépannage d'une installation frigorifique	
Symptôme	Cause possible	Intervention
Pression d'aspiration	a) Surchauffe du détendeur trop	Voir le " Détendeurs
instable. En fonctionnement	faible.	thermostatiques :
avec le détendeur		Dépannage".Installer un
thermostatique.	b) Orifice du détendeur trop	régulateur de capacité plus petit.
	grand.	Augmenter le différentiel entre
		pression
	c) Défaut de régulation de	d'enclenchement et pression de
	capacité:	déclenchement.
	1) régulateur de capacité trop	
	grand,	
	2) pressostat(s) pour régulation	
	d'étages	
	mal réglé(s).	
Pression d'aspiration instable.Er	Les oscillations se produisent	Aucun.
fonctionnement avec	habituellement.	
Détendeur électronique.		
	Injection de liquide trop faible pour	
	les raisons suivantes:	Corriger la charge de réfrigérant.
Température du		
gaz d'aspiration	a) Charge de réfrigérant trop	Voir le " Montage: Remplissage
trop élevée	petite dans le	de réfrigérant".
	circuit.	
		Voir sous les titres suivants
	b) Défaut de la conduite de liquide	"Niveau dans la bouteille
	ou d'un de	accumulatrice",
	ses composants.	
		"Déshydrateur trop froid "
	c) Détendeur thermostatique réglé	Bulles de vapeur dans le voyant"
	sur une	et "Pression
	surchauffe trop importante ou	d'aspiration trop basse".
	perte	Voir le " Détendeurs
	partielle de la charge du bulbe	

OFPPT/DRIF 111/155

Symptôme	Cause possible	Intervention
Température des	Injection de liquide trop forte à	Voir le " Détendeurs
gaz d'aspiration	cause de:	thermostatiques: Dépannage"
trop basse.		Voir le ". Détendeurs
	a) Détendeur réglé pour	thermostatiques : Dépannage".
	surchauffe trop faible.	
	b) Bulbe mal placé (chaud ou	
	mauvais	
	contact)	
Compresseur Démarrages	a) Compresseur trop puissant	Etablir une régulation de capacité
Futiles (déclenchement	pour la charge	(régulateur de
par pressostat basse pression).	instantanée.	capacité ou compresseurs en
	b) Compresseur trop puissant.	parallèle).
	c) Régulateur de pression	Installer un compresseur moins
	d'évaporation réglé	puissant.
	pour une pression d'ouverture	Régler correctement le régulateur
	trop haute.	KVP (avec
		manomètre).
Compresseur Démarrages	a) Pression de condensation trop	Voir sous "Pression de
Futiles (déclenchement	haute.	condensation trop haute".
par pressostat haute pression).		
	b) Défaut pressostat haute	Ajuster ou remplacer le pressostat
	pression.	haute pression par un KP 5 ou un
		pressostat combiné KP 15.
	c) Pressostat réglé pour une	
	pression d'ouverture trop basse.	Régler correctement le pressostat
		(avec manomètre).
		Pour éviter les démarrages futiles,
		installer un pressostat haute
		pression à réarmement manuel.

OFPPT/DRIF 112/155

Symptôme	Cause possible	Intervention
Temp. trop haute dans la conduite	Fuite au clapet d'aspiration et/ou	Remplacer les clapets. Voir aussi
de refoulement.	au clapet de refoulement	sous "Température
	(soupapes de puissance).	trop haute dans la conduite
		refoulement".
Compresseur	Migration de réfrigérant liquide	Régler le détendeur à une
Compresseur trop froid.	dans la conduite d'aspiration et	surchauffe plus basse selon
	peut-être jusqu'au compresseur	les méthodes MSS (surchauffe
	(détendeur mal réglé).	stable min.).
Compresseur	a) Compresseur et/ou moteur	Réduire la charge de
Compresseur trop chaud.	surchargé, car	l'évaporateur ou installer un
	évaporateur trop chargé d'où une	compresseur plus puissant.
	pression d'aspiration trop élevée.	
		Chercher le défaut entre
	b) Refroidissement du moteur et	condenseur et détendeur
	des cylindres	(voir sous "Pression d'aspiration
	trop faible car :	trop basse").
	1) manque de liquide dans	Remplacer les clapets.
	l'évaporateur	
		Supprimer l'échange de chaleur
	2) faible charge de l'évaporateur	ou installer un
		échangeur HE plus petit.
	3) clapets fuient	
		Voir sous "Pression de
	4) surchauffe trop forte dans	condensation trop élevée".
	l'échangeur de chaleur ou dans	
	l'accumulateur	
	d'aspiration.	
	c) Pression de condensation trop	
	élevée.	
	GIGVGG.	

OFPPT/DRIF 113/155

Symptôme	Cause possible	Intervention
A-coups:	a) Coups de bélier dans le	Régler le détendeur à une
a) en permanence,	cylindre	surchauffe plus haute
b) au démarrage.	(migration de réfrigérant liquide).	selon les méthodes MSS
		(surchauffe stable min.).
	b) Montée d'huile (pénétration de	
	réfrigérant	Installer un corps chauffant dans
	dans l'huile carter).	le carter du
		compresseur ou audessous.
	c) Usure des pièces mobiles	
	(roulements).	Réparer ou remplacer le
		compresseur.
Compresseur	Trop d'huile.	S'assurer d'abord que le problème
Niveau d'huile		ne provient pas de
trop haute dans le carter.	Retour insuffisant de l'huile de	la présence de réfrigérant dans
En cas de charge élevée	l'évaporateur à faible charge.	l'huile, ensuite purger
seulement.		celle-ci jusqu'au niveau correct.
	Dilution de réfrigérant dans l'huile	
Lors des arrêts ou des	carter	Vérifier la constitution de la
démarrages.	(température ambiante trop	conduite d'aspiration
	basse).	(poche d'huile, etc.).
		Voir le "Montage"
		Installer un corps chauffant dans
		le carter du
		compresseur ou au-dessous.

OFPPT/DRIF 114/155

Symptôme	Cause possible	Intervention
Compresseur	a) Trop peu d'huile.	S'assurer d'abord que le problème
		ne provient pas
Niveau d'huile	b) Retour insuffisant de l'huile de	d'une accumulation d'huile dans
trop bas dans le	l'évaporateur à faible charge car:	l'évaporateur,
carter.		remplir ensuite jusqu'au niveau
	1) conduites d'aspiration	d'huile correct.
	verticales trop larges.	Pratiquer des poches d'huile à 1.2
		m ou 1.5 m
	2) aucun séparateur d'huile.	d'intervalle dans les conduites
		d'aspiration verticales.
	3) conduite d'aspiration	Le liquide doit entrer par le haut:
	horizontale sans pente.	si ce n'est le cas,
		intervertir les conduites
	c) Usure des pistons, segments et	entrée/sortie. Voir aussi le
	cylindre.	" Montage".
		Remplacer les composants usés.
	d) Pour compresseurs en	Dans tous les cas : le dernier
	parallèle :	compresseur qui
		démarre est le premier à manquer
	Avec égalisation de pression	d'huile. Voir aussi
	- les compresseurs ne sont pas	le " Montage".
	dans le même plan vertical;	Aligner les compresseurs dans le
		même plan horizontal.
	le tuyau d'égalisation est trop	
	étroit.	Installer un tuyau d'égalisation
		plus large et, si
	2) Avec régulation du niveau	nécessaire, un tuyau d'égalisation
	d'huile:	de vapeur.
		Nettoyer ou remplacer le boîtier
	colmatage total ou partiel du	du niveau à flotteur.
	régulateur à flotteur ;	
	régulateur à flotteur bloqué.	Nettoyer ou remplacer le tuyau de
		retour d'huile ou
	e) Colmatage total ou partiel du	remplacer le régulateur à flotteur
	retour du séparateur d'huile ou	ou le séparateur
	régulateur à flotteur bloqué.	d'huile complet.

OFPPT/DRIF 115/155

Résumé de Théorie et
Guide de travaux pratiques

Entretien et dépannage d'une installation frigorifique

Symptôme	Cause possible	Intervention
Compresseur	a) Dilution massive de réfrigérant	Installer un corps chauffant dans
Montée d'huile	dans l'huile carter (température	le carter du
au démarrage.	ambiante trop	compresseur ou audessous.
	basse).	
		Séparateur d'huile trop froid
	b) Avec séparateur d'huile:	pendant les arrêts.
	pénétration de	
	réfrigérant dans l'huile pendant les	Installer un corps chauffant à
	arrêts.	thermostat ou monter
		une électro-vanne temporisée sur
		la conduite de retour d'huile.
Compresseur	a) Migration de réfrigérant liquide	Régler le détendeur à une
Montée d'huile	de l'évaporateur au carter du	surchauffe plus haute
en fonctionnement.	compresseur.	selon les méthodes MSS
		(surchauffe stable min.).
	b) Avec séparateur d'huile: le	
	régulateur à	Remplacer le régulateur à flotteur
	flotteur ne ferme pas	ou le séparateur
	correctement.	d'huile complet.

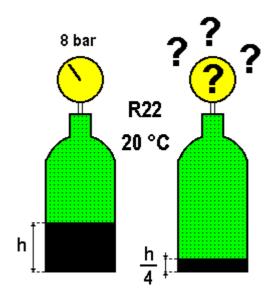
OFPPT/DRIF 116/155

Résumé de Théorie et Guide de travaux pratiques	Entretien et dépa	nnage d'une installation frigorifique
		Dans tous les cas :
Compresseur Huile teintée.		
	Contamination du circuit car:	faire la vidange et remplacer le
		déshydrateur.
	a) Montage peu soigné (propreté	
	non respectée).	Si nécessaire, nettoyer le circuit
		de réfrigérant.
	b) Dégradation de l'huile (humidité	
	dans le circuit).	Si nécessaire, nettoyer le circuit
		de réfrigérant.
	c) Dégradation de l'huile	
	(température trop élevée dans la	Chercher et éliminer la cause de
	conduite de refoulement).	la température
		incorrecte dans la conduite de
	d) Particules d'usure.	refoulement.
		Voir sous
	e) Mauvais nettoyage après une	"Température trop élevée dans la
	avarie du moteur.	conduite de
		refoulement".
		Si nécessaire, nettoyer le circuit.
		Si nécessaire, nettoyer le circuit
		de réfrigérant.
		Remplacer les pièces usées ou
		monter un nouveau
		compresseur.
		Nettoyer le circuit de réfrigérant.
		Installer un filtre antiacide. Au
		besoin, le remplacer plusieurs fois.

OFPPT/DRIF 117/155

Résumé de Théorie et Guide de travaux pratiques	Entretien et dépannage d'une installation frigorific
<u> Module</u> : Entretien et l	Dépannage des Installations Frigorifiques
GUIDE DI	E TRAVAUX PRATIQUE

118/155


OFPPT/DRIF

Sommaire DES TP:

Relation pression - température
Montage de l'évaporateur
Problème de flash-gas
Pannes principales
Jeu des 12 erreurs
Régulateur de démarrage et détendeur MOP
Détendeur capillaire
Pompe à chaleur
Pression différentielle
Moteurs monophasés multi vitesses
Dépannage électrique
Nouveaux fluides
Hygrométrie des chambres froides
Couplage des moteurs triphasés
Démarrage Part Winding
Moteurs Dahlander
Condenseur à eau perdue
Dry-cooler
Notions de psychrométrie
Tour de refroidissement
Problème de déconcentration
Les pertes de charge
Vases d'expansion
Refroidisseurs de liquide
Bouteille casse pression

OFPPT/DRIF 119/155

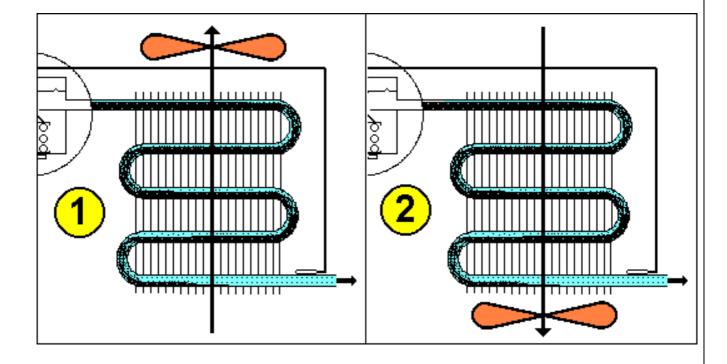
TP1: Relation pression - température

La relation pression-température est à la base de nombreux phénomènes ayant pour siège aussi bien l'évaporateur et le condenseur qu'une simple bouteille de fluide frigorigène. Aussi n'est-il pas inutile de bien l'expliciter.

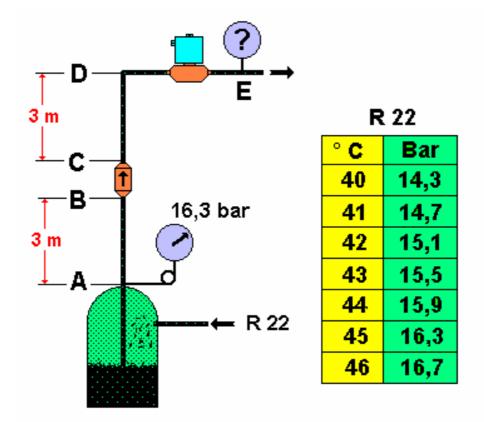
Travail demander:

Soit deux bouteilles contenant chacune un mélange de liquide et de vapeurs de R22 à la même température de 20°C

Dans la première bouteille, la hauteur du liquide est 4 fois plus importante que dans la seconde bouteille.


Sachant que la pression dans la première bouteille est de 8 bar,

Quelle sera la pression indiquée par un manomètre raccordé sur la seconde bouteille ?


OFPPT/DRIF 120/155

TP2 : Montage de l'évaporateur

Lequel des 2 montages ci-dessous vous semble-t-il le meilleur ? Pourquoi ?

TP3: Problème de flash-gas

Avant d'étudier en détail la famille des pannes de la pré-détente, ce chapitre se propose d'expliciter le phénomène trop méconnu de la pré-détente instantanée dans la ligne liquide (appelé flash-gas par les anglo-saxons).

Pour rappel, l'huile utilisée dans les installations frigorifiques est très peu miscible avec le fluide frigorigène en phase vapeur. Aussi la sélection et le tracé des tuyauteries d'aspiration et de refoulement doivent être particulièrement soigné afin que l'huile qui part en permanence par le refoulement du compresseur puisse revenir sans problème par l'aspiration

A l'inverse, cette huile se mélange parfaitement avec le fluide frigorigène liquide et son entraînement dans le condenseur et la ligne liquide ne pose généralement pas de problème, même si la vitesse du mélange est faible ou si la tuyauterie présente des points bas.

Pourtant, sur les installations où le condenseur à air est assez éloigné de l'évaporateur, si une mauvaise conception de la ligne liquide ne risque pas de créer des problèmes de Retour d'huile, elle peut provoquer une perte de charge suffisante pour engendrer le phénomène de flash-gas...

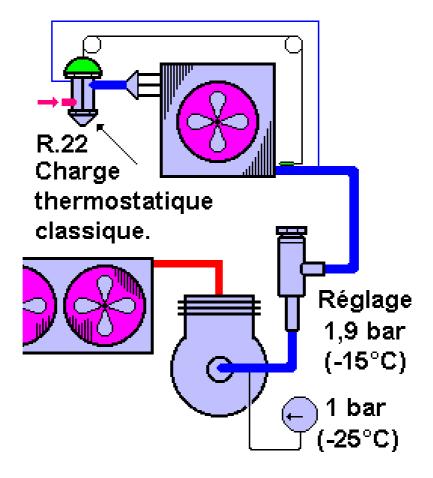
OFPPT/DRIF 122/155

Travail demander:

Fluide frigorigène utilisé : R22 (une colonne de 1m de R22 = 0,12 bar).

DP tuyauteries AB + CD = 0,02 bar/m

DP déshydrateur (BC) = 0,15 bar


DP électrovanne (DE) = 0,21 bar

Dénivelé total = 6 m.

- 1) En fonctionnement, quelle sera la pression à l'entrée du détendeur (point E) ?
- 2) Quelle doit être la valeur minimale du sous refroidissement du liquide pour éliminer tous risques de flash-gas ?

OFPPT/DRIF 123/155

TP6: Régulateur de démarrage et détendeur MOP

Dans le chapitre précédent, nous avons vu les problèmes soulevés par le démarrage d'une installation frigorifique avec une BP anormalement élevée par rapport à la BP normale de fonctionnement. Nous savons maintenant qu'un détendeur MOP peut parfois permettre de solutionner le problème. Cependant, dans certains cas (gros volume coté BP, dégivrage par gaz chauds) le temps nécessaire pour descendre la BP jusqu'au point MOP est beaucoup trop long. Le compresseur restant surchargé trop longtemps, il risque alors de couper en sécurité. La solution pour résoudre ce type de problème est une vanne frigorifique spéciale appelée régulateur de démarrage...

OFPPT/DRIF 124/155

Travail demander:

Peut-on installer à la fois un régulateur de démarrage et un détendeur MOP?

Pour vous aider à répondre à cette question, observons l'installation ci-contre, représentée en fonctionnement normal.

La température d'évaporation est alors de -25°C (soit 1 bar avec du R22) et le régulateur de démarrage est réglé pour limiter à 1,9 bar (soit -15°C) *au maximum* la pression coté compresseur.

Le détendeur à égalisation externe est équipé d'un train thermostatique démontable, avec une charge par exemple à adsorption. Après un dégivrage, la température dépassant 0°C, la pression coté l'évaporateur peut remonter au-dessus de 4 bar.

Imaginons que le train thermostatique du détendeur soit percé et que vous deviez le remplacer. *Malheureusement* (vous vous en doutiez), vous n'avez pas le même train thermostatique dans votre véhicule. Par contre, vous disposez de 3 trains MOP adaptables sur le détendeur : un train avec un point MOP à -30°C, un autre avec un MOP à -20°C et un troisième avec un MOP à -10°C.

1) Comment fonctionnerait cette l'installation avec chacun de ces 3 trains ?

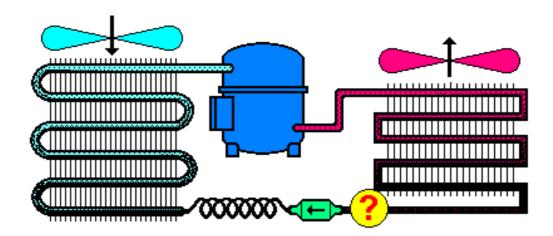
Lequel choisiriez-vous ?

2) Comment procéderiez-vous pour régler le régulateur de démarrage ?

OFPPT/DRIF 125/155

TP7: <u>Détendeur capillaire</u>

De tous les détendeurs existants, le détendeur capillaire est assurément le plus simple puisqu'il n'est constitué que d'un simple morceau de tube frigorifique de petit diamètre, ce qui lui assure un coût de revient extrêmement faible. De plus, il ne contient aucun organe mécanique et il ne possède aucun réglage, ce qui lui confère une fiabilité et une tenue dans le temps excellentes.

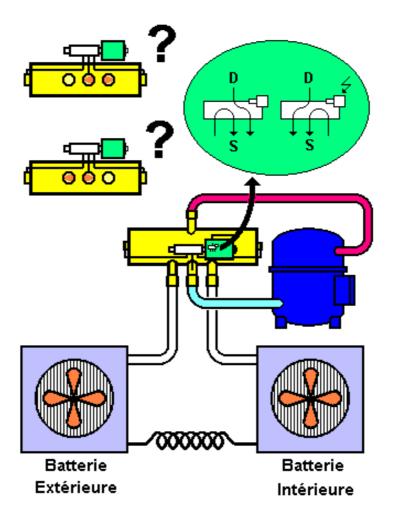

Malgré quelques précautions à respecter, que nous verrons dans ce chapitre, les nombreux avantages du détendeur capillaire expliquent son choix pour équiper de très nombreux matériels de petite puissance, surtout lorsqu'ils sont fabriqués en grande série : climatiseurs, réfrigérateurs ménagers, petites pompes à chaleur, petits meubles frigorifiques, etc.

L'objet de ce chapitre est de bien mettre en évidence les précautions nécessaires pour toute intervention sur un circuit frigorifique équipé d'un détendeur capillaire...

Travail demander:

Nous n'avons pas représenté la bouteille liquide en sortie du condenseur.

A votre avis, est-il recommandé d'en mettre une ? Pourquoi ?



OFPPT/DRIF 126/155

TP8: Pompe à chaleur

De très nombreuses pompes à chaleur ont été installées depuis le premier choc pétrolier de 1973. La plupart de ces pompes à chaleur sont équipées d'une vanne d'inversion de cycle à 4 voies utilisée soit pour passer la pompe en régime été (refroidissement), soit pour dégivrer la batterie extérieure en régime hiver (chauffage).

L'objet de ce chapitre est d'étudier le fonctionnement de la vanne d'inversion de cycle à 4 voies (V4V), qui équipe la majorité des pompes à chaleur air-air classiques ainsi que les systèmes de dégivrage par inversion de cycle (voir page 433), de sorte à être capable de remédier efficacement aux dysfonctionnements les plus courants...

OFPPT/DRIF 127/155

Résumé de Théor	ie et
Guide de travaux	pratiques

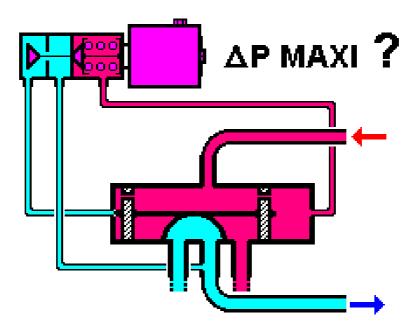
Entretien et dépannage d'une installation frigorifique

Travail demander:

en plein hiver, un dépanneur doit remplacer la V4V sur l'installation ci-contre. Après avoir récupéré le fluide de l'installation et démonté la V4V défectueuse, le dépanneur se pose la question suivante : Vu la température extérieure et la température intérieure (plutôt fraîche), la régulation va faire repartir la pompe à chaleur « en chaud ».

Alors, avant de monter la V4V neuve, vaut-il mieux amener le tiroir à droite, à gauche, ou cela n'a-t-il aucune importance ?

Pour vous aider, nous avons reproduit un schéma gravé sur l'électrovanne.


OFPPT/DRIF 128/155

TP9: <u>Pression différentielle</u>

Travail demander:

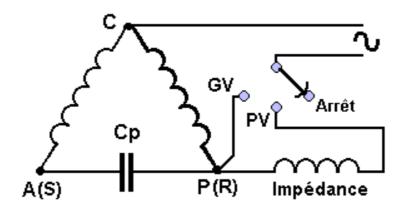
en parcourant la documentation d'un des principaux fabricants de V4V, vous trouvez les renseignements suivants :

Pour l'inversion correcte :

Pression différentielle mini: 1 bar.

Pression différentielle maxi: 25 bar.

Nous savons déjà qu'il faut une pression différentielle minimum (△P entre la HP et la BP) pour permettre le basculement franc du tiroir. Nous en avons longuement parlé.


Mais pourquoi la pression différentielle entre la HP et la BP ne doit-elle pas dépasser un maximum de 25 bar ? Quels sont les risques ?

OFPPT/DRIF 129/155

TP10 : Moteurs monophasés multi-vitesses

De très nombreux matériels de faible puissance utilisés en réfrigération domestique ou en petite climatisation sont équipés de moteurs monophasés (réfrigérateurs, congélateurs, climatiseurs individuels, petites pompes à chaleur...).

Les moteurs monophasés à phase auxiliaire, bien qu'ils soient très répandus, sont souvent beaucoup plus méconnus que les moteurs triphasés. Le but de ce chapitre n'est pas d'étudier pourquoi ou comment ces moteurs tournent, mais de savoir raccorder électriquement et dépanner ce type de matériel ainsi que les accessoires nécessaires au fonctionnement (condensateurs et relais de démarrage). Bien sûr, nous insisterons tout particulièrement sur les moteurs de compresseur...

Moteurs à plusieurs vitesses.

Le schéma de principe ci-contre représente un moteur de ce type équipant le ventilateur de soufflage de nombreux climatiseurs.

Le principe est de créer une chute de tension aux bornes du moteur, ce qui réduit le couple moteur et donc la vitesse.

Une bobine (impédance) est raccordée en série avec le moteur de type PSC. Quand le commutateur est en position **PV**, l'intensité absorbée traverse l'impédance qui crée une chute de tension aux bornes du moteur : Il tourne en **P**etite **V**itesse.

Quand le commutateur est en position **GV**, l'impédance est court-circuitée et le moteur reçoit la tension du réseau : Il tourne en **G**rande **V**itesse.

OFPPT/DRIF 130/155

Travail demander:

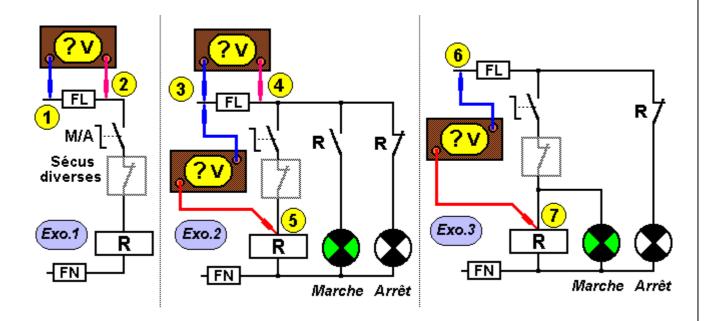
Un moteur monophasé 220V, équipé d'un condensateur de marche de $3\mu F$, entraîne le ventilateur d'un climatiseur. Un commutateur à 4 bornes (C, PV, MV, GV) permet la sélection de la vitesse du ventilateur (**P**etite, **M**oyenne ou **G**rande vitesse).

Cinq fils sortent du moteur : un Bleu, un Rouge, un Noir, un Jaune et un Vert.

Tous les fils étant débranchés, vous trouverez dans le tableau ci-contre la valeur de la résistance mesurée entre chacun de ces fils (par exemple, il y a 270Ω entre le fil **J**aune et le fil **V**ert). *Alors, à vos crayons et retrouvez le schéma interne du moteur*

	В	R	N	J	V
В	-	-	-	-	-
R	110Ω	-	-	-	-
N	110Ω	220Ω	-	-	-
J	290Ω	400Ω	180Ω		-
٧	200Ω	310Ω	90Ω	270 Ω	-

OFPPT/DRIF 131/155


Dépannage électrique

De très nombreuses pannes provoquent une coupure du circuit de commande par une sécurité électrique et l'installation (ou une partie de l'installation) ne fonctionne plus. Placés dans cette situation, de trop nombreux dépanneurs « bidouilleurs » appuient au hasard sur tous les boutons de réarmement, dérèglent des appareils ou des sécurités, appuient à la main sur les contacteurs (en risquant un accident)...

Pourtant, une démarche structurée permettrait de gagner énormément de temps et de dépanner l'installation à coup sûr sans provoquer d'autres pannes. En fait, il suffit de connaître quelques règles de base très simples pour être capable de déterminer très rapidement quel est l'organe électrique (sécurité ou autre) qui a coupé.

Au lieu de se demander « qu'est-ce qui a bien pu couper ? » et de rechercher la panne « au pif », le dépanneur ayant localisé très vite le défaut pourra se poser la question essentielle : « pourquoi cette sécurité a-t-elle coupée, et comment faire pour que cela ne se reproduise plus ? ». Il trouvera le temps d'effectuer un contrôle général de l'installation et pourra prévenir les pannes à répétition.

Ce type d'attitude sera bénéfique pour tout le monde, que ce soit le client, le dépanneur ou l'entreprise.


OFPPT/DRIF 132/155

TP11: Nouveaux fluides

Jusqu'à la signature du fameux protocole de Montréal en septembre 87, la plupart des frigoristes étaient des gens relativement heureux.

Ils utilisaient les fluides frigorigènes disponibles depuis pas mal d'années et les maîtrisaient plutôt bien.

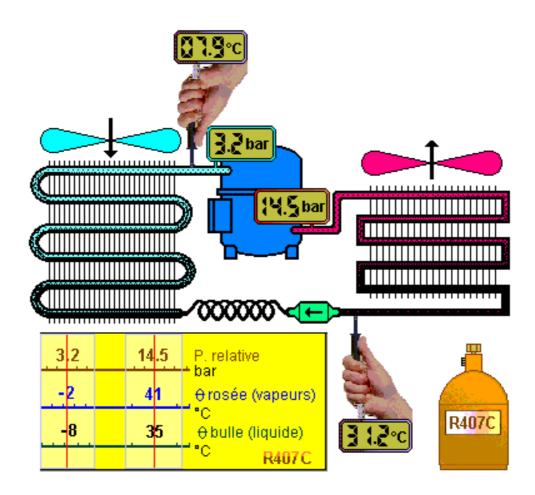
En froid commercial, le R12 et le R502 étaient les plus courants. En climatisation, le R22 était le plus utilisé.

Et voila qu'à Montréal, ont nous dit que le R12 et le R502 (ainsi que le R11, le R113, le R114, le R115 et le R500) sont des **CFC** (chlorofluorocarbures) qui détruisent la couche d'ozone et que ces fluides doivent disparaître avant 10 ans !

L'échéance semblait bien lointaine et les CFC ont continué à être utilisés de plus belle par la plupart des frigoristes, d'autant plus qu'il n'y avait pas vraiment de solutions de remplacement, sauf à concevoir les installations neuves avec du R22, quand c'était possible.

Et aujourd'hui.

OFPPT/DRIF 133/155


Un dépanneur hésitant pourrait penser que la surchauffe est élevée alors que le compresseur « croque » du liquide ou encore que le sous refroidissement est très correct alors qu'il est nul et partir dans des hypothèses de dépannage farfelues.

Alors, restez particulièrement vigilant avec ces fluides en attendant d'acquérir de l'expérience!

Travail demander:

A propos, quelle est la valeur de la surchauffe sur l'installation ci-contre ? Et quelle est la valeur du sous refroidissement ?

Ces valeurs vous semblent-elles normales ? Pourquoi ?

OFPPT/DRIF 134/155

TP12 : <u>Hygrométrie des chambres froides</u>

Pour rappel, le sujet a déjà été succinctement abordé.

Pour contrôler la température dans une chambre froide, il y a généralement peu de problèmes puisqu'il suffit d'installer la puissance frigorifique suffisante et de régler convenablement la régulation de température. Cependant, c'est uniquement la bonne sélection du couple évaporateur / compresseur qui va définir l'humidité relative qu'on obtiendra finalement dans l'ambiance : alors, il vaut mieux ne pas se tromper !

Travail demander:

Quand la régulation de température ne peut pas se faire facilement avec un thermostat (une déserte de self par exemple), on peut utiliser un pressostat BP de régulation. En effet, Nous savons que le $\Delta\Theta$ total à l'évaporateur est constant et que la pression à l'aspiration au compresseur est égale à la pression d'évaporation moins les pertes de charges (Δ P) à l'aspiration.

Un client souhaite obtenir dans sa chambre froide une température comprise entre 4 et 6° C et une hygrométrie entre 90 et 85% (selon le tableau de la page 421, le $\Delta\Theta$ total doit donc être compris entre 5 et 7°C). Sachant que l'évaporateur est de type ventilé et qu'on peut estimer la perte de charge à l'aspiration du compresseur à 0,3 bar,

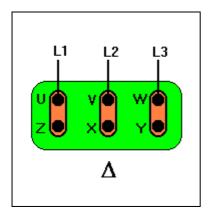
À quelles valeurs régleriez-vous la coupure et l'enclenchement du pressostat BP de régulation ?

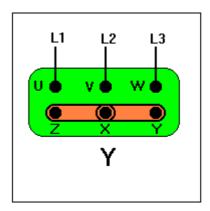
Le fluide utilisé est du R22 et vous trouverez ci-dessous un aperçu des relations pression / température indiquées par le manomètre BP :

То	8°C	6°C	4°C	2°C	0°C	-2°C	-4°C	-6°C	-8°C	-10°C
Ро	5,4bar	5bar	4,6bar	4,3bar	4 bar	3,6bar	3,3bar	3 bar	2,8bar	2,5bar

OFPPT/DRIF 135/155

TP13: Couplage des moteurs triphasés

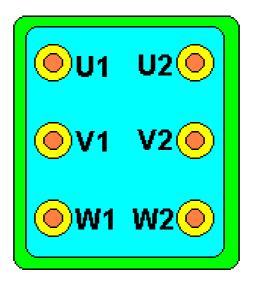

Travail demander:


La moindre erreur dans le couplage d'un moteur risque d'entraîner sa destruction immédiate et irrévocable à la mise sous tension. Pour éviter ce genre de désagrément, essayez de compléter le tableau ci-dessous en indiquant dans chaque case le couplage à réaliser (Y ou Δ) en fonction du type de moteur et de la tension d'alimentation utilisée.

Type de moteur	Couplage selon la tension d'alimentation					
Triphasé Ψ	3 x 127 V	3 x 220 V	3 x 380 V	3 x 660 V		
127 / 220 V	•					
220 / 380 V						
380 / 660 V						

Le signe □ indique une sous-tension d'alimentation. Pour rappel, si le moteur est utilisé pour entraîner une machine à fort couple résistant (un compresseur par exemple), il ne pourra pas démarrer. Le moteur va donc " caler " en absorbant en permanence son intensité de démarrage : *il ne reste plus qu'à espérer* que les sécurités thermiques ou les protections internes couperont le moteur avant qu'il ne " grille " définitivement.

Le signe □□ indique une surtension d'alimentation. Généralement ce genre d'erreur ne pardonne pas : le moteur " grille " quasi instantanément dès sa mise sous tension !



OFPPT/DRIF 136/155

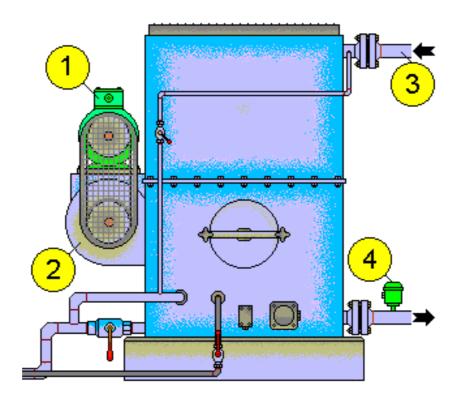
TP14: Démarrage Part Winding

Ce chapitre se propose d'étudier la technique de démarrage appelée " Part Winding ou PW ", très couramment utilisée en froid et climatisation afin de réduire les divers inconvénients que nous venons de voir...

Travail demander:

Vous testez ce moteur de compresseur et vous trouvez une résistance d'environ 0,2 □ entre les bornes U1 et V1, U1 et W1, V1 et W1. Vous vous dites qu'il s'agit sûrement d'un moteur PW.

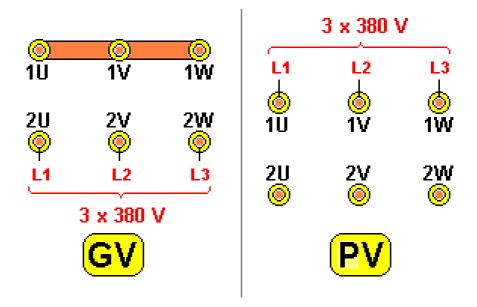
Vous testez alors la rangée de droite et vous trouvez environ 0,4 □ entre les bornes U2 et V2, U2 et W2, V2 et W2, soit une résistance environ 2 fois plus élevée. De plus, vous ne trouvez aucune liaison entre les 3 bornes de gauche et les 3 bornes de droite.


De quel type exact de moteur peut-il bien s'agir ?

OFPPT/DRIF 137/155

TP15: Moteurs Dahlander

Les moteurs triphasés à 2 vitesses de rotation sont fréquemment utilisés sur les centrales de traitement d'air afin d'assurer 2 débits différents selon le régime de fonctionnement : Petite Vitesse (**PV**) en régime hiver et Grande Vitesse (**GV**) en régime été (voir : *panne de l'évaporateur trop petit, aspect pratique, page 123).*


Les moteurs à 2 vitesses équipent aussi très souvent les tours de refroidissement (le fonctionnement de ces appareils sera détaillé page 506). Dans l'application courante, le moteur à 2 vitesses (repère 1) entraîne le ventilateur de la tour (repère 2). Le ventilateur étant à l'arrêt, si le compresseur s'enclenche, la température de l'eau qui entre dans la tour (repère 3) commence à augmenter. Le thermostat placé à la sortie de la tour (repère 4) détecte cette montée de température et enclenche le ventilateur en PV. Si la température de l'eau continue encore d'augmenter, le thermostat passe le ventilateur en GV et la tour donne alors sa puissance maximum...

OFPPT/DRIF 138/155

Un autre type de moteur à 2 vitesses, appelé moteur Dahlander, est très répandu de nos jours. Le bornier d'un tel moteur est représenté ci-contre :

il s'agit d'un moteur mono -Tension à 6 bornes.

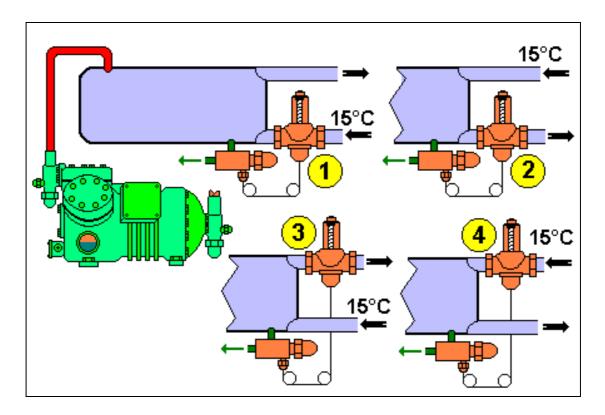
En grande vitesse, on amène les 3 phases d'alimentation sur les 3 bornes 2U, 2V et 2W, les 3 autres bornes (1U, 1V et 1W) devant être reliées entre-elles.

En petite vitesse, les 3 phases alimentent les bornes 1U, 1V et 1W tandis que les 3 autres bornes (2U, 2V et 2W) doivent être laissées "à l'air libre", sans aucune alimentation.

OFPPT/DRIF 139/155

Résumé de Théorie et Guide de travaux pratiques	Entretien et dépannage d'une installation frigorifique
i Guide de liavaux bialiques i	

Travail demander:


Vous "sonnez" les 6 bornes du moteur Dahlander ci-dessus à l'aide d'un ohmmètre et vous trouvez les résultats ci-contre.

Pourriez-vous retrouver le câblage interne des enroulements de ce moteur ?

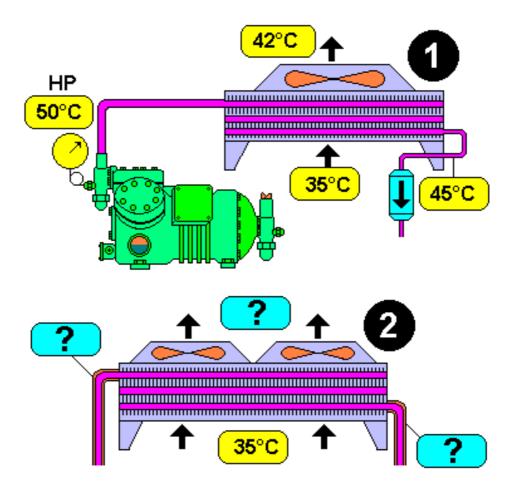
	1U	1V	1W	2U	2V	2W
1U	-					
1V	144 Ω	-				
1W	144 Ω	144 Ω	-			
2U	108 Ω	108 Ω	36 Ω	-		
2V	108 Ω	36 Ω	108 Ω	72 Ω	-	
2W	36 Ω	108 Ω	108 Ω	72 Ω	72 Ω	-

OFPPT/DRIF 140/155

TP16: Condenseur à eau perdue

Nous avons déjà largement étudié et commenté les pannes de condenseur à air trop petit (voir : analyse des symptômes et aspect pratique, page 171 à 190).

Dans ce chapitre, nous compléterons nos connaissances en étudiant les pannes HP particulières aux condenseurs à eau perdue régulés par une Vanne à eau Pressostatique.


Travail demander!

Des 4 montages ci-contre, lequel vous semble-t-il être le meilleur ? Pourquoi ?

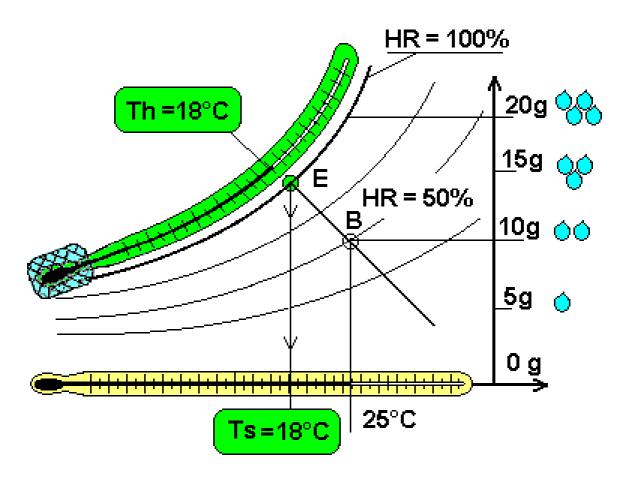
OFPPT/DRIF 141/155

TP17: Dry-cooler

Comme nous venons de le voir, le prix de plus en plus élevé de l'eau de ville nous oblige à trouver des systèmes plus économiques pour l'utiliser rationnellement dans les condenseurs à eau...

Travail demander!

Avec une température extérieure de 35°C, si on utilise un Dry-cooler au lieu d'un condenseur à air :


Quelle serait la température approximative de l'air à la sortie du Dry-cooler ?

Quelle serait la température de l'eau à l'entrée et la sortie de l'appareil ?

Quelle température de condensation le manomètre HP indiquerait-il ?

OFPPT/DRIF 142/155

TP18: Notions de psychrométrie

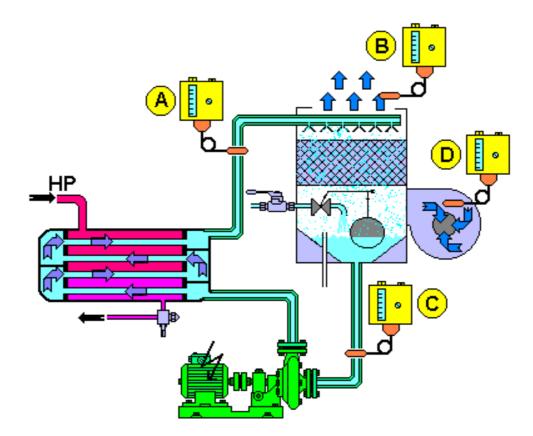
Si les notions de température humide et de HR sont très importantes en climatisation, elles le sont tout autant pour comprendre le fonctionnement d'une tour de refroidissement, ce qui fera l'objet du chapitre suivant, après ces quelques exercices...

Travail demander!

Si de l'air à 25°C est totalement saturé (soit 100% de HR), quelle est sa température humide ?

Si de l'air à 25°C est totalement sec (soit 0% de HR) sa température humide sera-telle toujours égale à 18°C ?

Comment pourrait-on procéder pour connaître l'Hygrométrie Relative de l'air d'un local si l'on ne dispose que d'un seul thermomètre ?


OFPPT/DRIF 143/155

TP19: Tour de refroidissement

Rappelez-vous bien le fonctionnement du psychromètre vu dans le chapitre précédent car une tour de refroidissement est en quelque sorte un psychromètre géant....

Le ventilateur de la tour est indispensable pour propulser le fort débit d'air qui permet à l'eau chaude ruisselant sur le packing de s'évaporer (et donc de se refroidir). Si le ventilateur est à l'arrêt, l'eau chaude n'est plus en contact avec la quantité d'air nécessaire à son évaporation et le refroidissement ne se fait plus : la puissance de la tour est alors très faible.

D'un autre coté, si la température humide extérieure est très faible, l'eau sera très bien refroidie : la puissance de la tour est maximum. Mais, si l'eau est trop froide à l'entrée du condenseur, la HP risque de diminuer dangereusement.

OFPPT/DRIF 144/155

Résumé de Théorie et
Guide de travaux pratiques

Entretien et dépannage d'une installation frigorifique

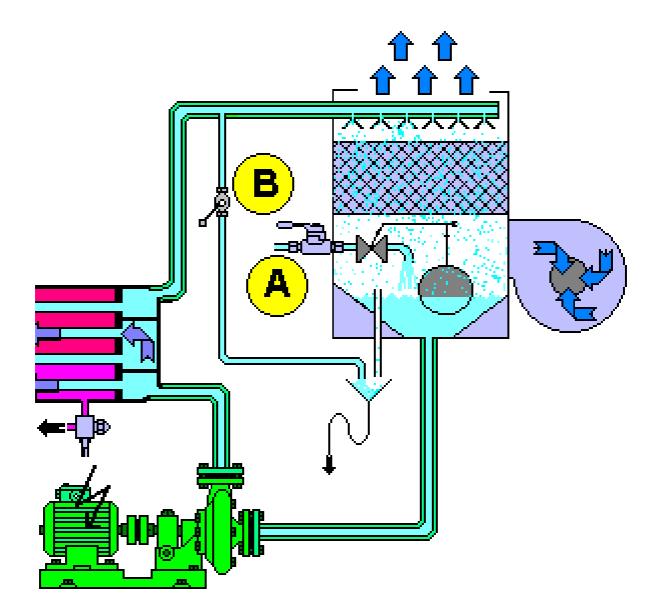
Travail demander!

C'est pourquoi on installe un thermostat dont le rôle est de commander le ventilateur :

1) Où doit-on installer le bulbe du thermostat?

Au point A : à l'arrivée de l'eau dans la tour ?

Au point B : à la sortie de l'air de la tour ?

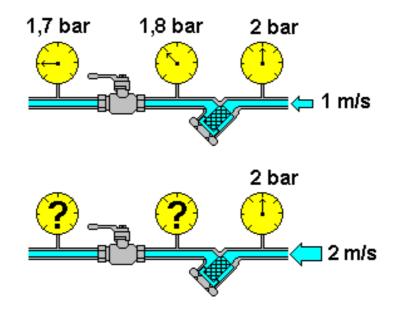

Au point C : à la sortie de l'eau de la tour ?

Au point D : afin de mesurer la température extérieure ?

2) A quelle température le thermostat doit-il stopper le ventilateur ?

OFPPT/DRIF 145/155

TP20 : Problèmes de déconcentration


Travail demander!

Une production frigorifique de 50 kW utilise de l'eau d'appoint (vanne A) à TH = 15°F pour sa tour de refroidissement.

Evaluez le débit d'eau de déconcentration à régler sur la vanne B

OFPPT/DRIF 146/155

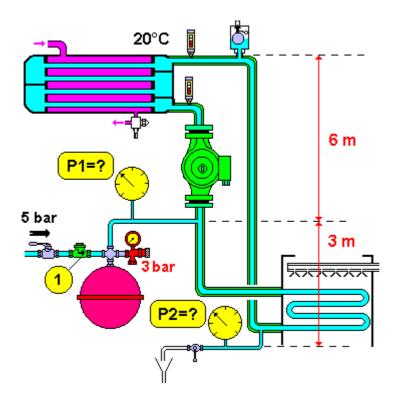
TP21: Pertes de charge

Vous apercevez ci-contre un tronçon de tuyauterie parcouru par un débit d'eau à une vitesse de 1 m/s.

Les manomètres indiquent les pressions mesurées en différents points. On en conclu qu'avec 1m/s :

La **PdC** du filtre est égale à : 2 -1,8 = 0,2 bar

La **PdC** de la vanne est égale à : 1,8 - 1,7 = 0,1 bar


Travail demander!

Si on doublait la vitesse de l'eau, qu'indiquerait chacun des manomètres placés à la sortie du filtre et à la sortie de la vanne ?

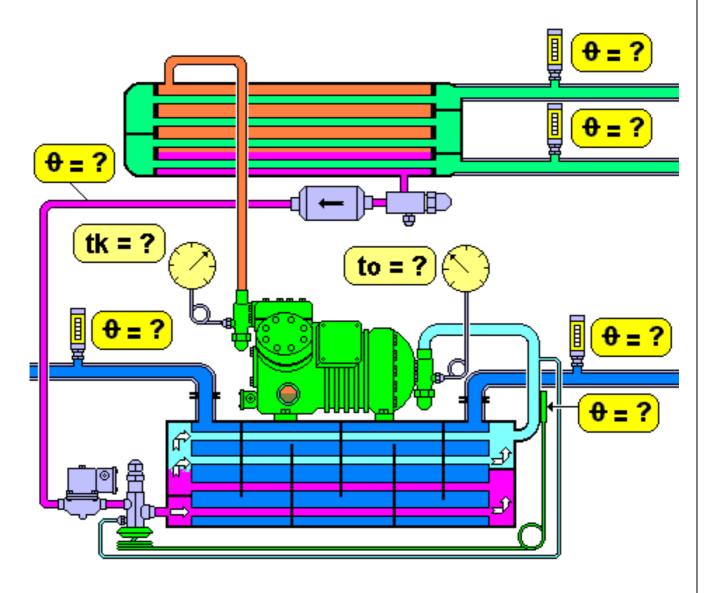
OFPPT/DRIF 147/155

TP22: Vases d'expansion

A QUELLE PRESSION FAUT-IL REMPLIR LE CIRCUIT ? Avant toute chose, quand on doit remplir en eau un circuit hydraulique (lors de la mise en service de l'installation ou après une vidange pour travaux), il est indispensable de connaître la pression de remplissage que l'on doit maintenir dans le circuit....

Travail demander!

Considérons l'installation ci-contre, de type tour de refroidissement indirecte. Admettons que le remplissage s'effectue à une température de 20°C, la pompe étant à l'arrêt (si elle fonctionnait sans eau, elle serait très rapidement détruite).


L'eau étant à 20°C, la pression d'eau de ville étant par exemple de 5 bar, devonsnous remplir le circuit à 0,5 bar, à 1 bar, à 3 bar, à 5 bar ? En fait, que devrait indiquer le manomètre P1 après remplissage ?

Le circuit étant rempli, quelle sera la pression P2 mesurée au point le plus bas de l'installation, près de la vanne de vidange ?A quoi sert l'appareil repère 1?

OFPPT/DRIF 148/155

TP23: Refroidisseurs de liquide

Les pannes frigorifiques rencontrées sur les groupes d'eau glacée sont très similaires aux pannes rencontrées sur les installations à détente directe (voir pages 53 à 190 de ce manuel). Cependant, pour vous aider à transposer vos connaissances de la détente directe vers l'eau glacée, nous allons passer en revue quelques unes des anomalies les plus courantes. Mais, revenons auparavant sur les paramètres normaux de fonctionnement d'une installation au R22.

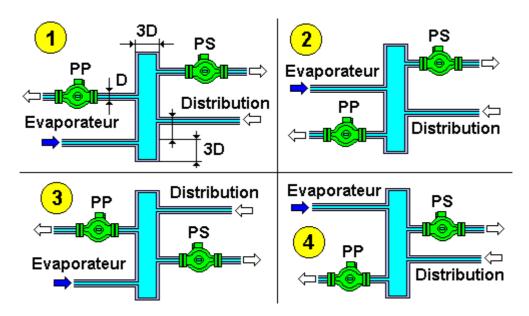
OFPPT/DRIF 149/155

Travail demander!

Le groupe de production d'eau glacée ci-contre, équipé d'un condenseur à eau recyclée, vient d'être mis en service par le SAV du constructeur.

Vous connaissez les températures d'entrée d'eau aux échangeurs :

27°C pour la température d'entrée d'eau au condenseur.


12°C pour la température d'entrée d'eau glacée à l'évaporateur.

- 1) Sachant que tout fonctionne normalement, indiquez l'entrée et la sortie de chaque échangeur. Complétez toutes les températures qui manquent.
- 2) Quelles sont les valeurs normales de la surchauffe et du sous refroidissement ?
- 3) Sur le groupe d'eau glacée est plaqué : R22 70 kW. Evaluez les débits d'eau en circulation à l'évaporateur et au condenseur.

OFPPT/DRIF 150/155

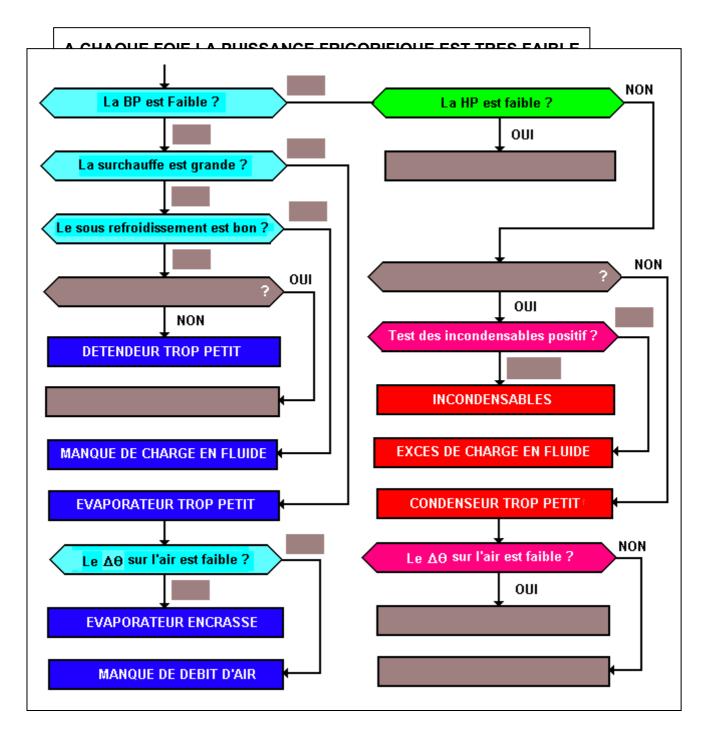
TP24: Bouteille casse pression

UTILISATION D'UNE BOUTEILLE CASSE PRESSION : dans une bouteille bien dimensionnée, la vitesse de l'eau est inférieure à 0,1 m/s, c'est à dire presque nulle (mais il faut respecter la règle dite " règle des 3 D ", comme sur le schéma n°1 ci-dessous).

Ainsi, il n'y a pas de Pertes de Charge dans la bouteille et on a la certitude que la pression est identique dans le primaire et dans le secondaire : d'où le nom de *bouteille casse pression*.

Pour que les températures se répartissent correctement dans la bouteille et dans l'installation, les différents piquages doivent être judicieusement placés.

Travail demander;


- 1. Parmi les 4 propositions ci-contre, Quel est d'après vous le meilleur montage ?
- 2. Où doit-on placer le vase d'expansion et comment peut-on le contrôler ?

OFPPT/DRIF 151/155

Guide de travaux pratiques	
<u>Module</u> : Entretien et Dépa	annage des Installations Frigorifiques
GUIDE	<u>D'EVALUATION</u>
COIDL	<u>D E VALOATION</u>

TP1:

Dans l'organigramme ci-dessous, complétez toutes les zones grisées de façon à retrouver la démarche logique permettant de diagnostiquer les pannes principales que nous venons d'étudier sur les refroidisseurs d'air à condensation à air.

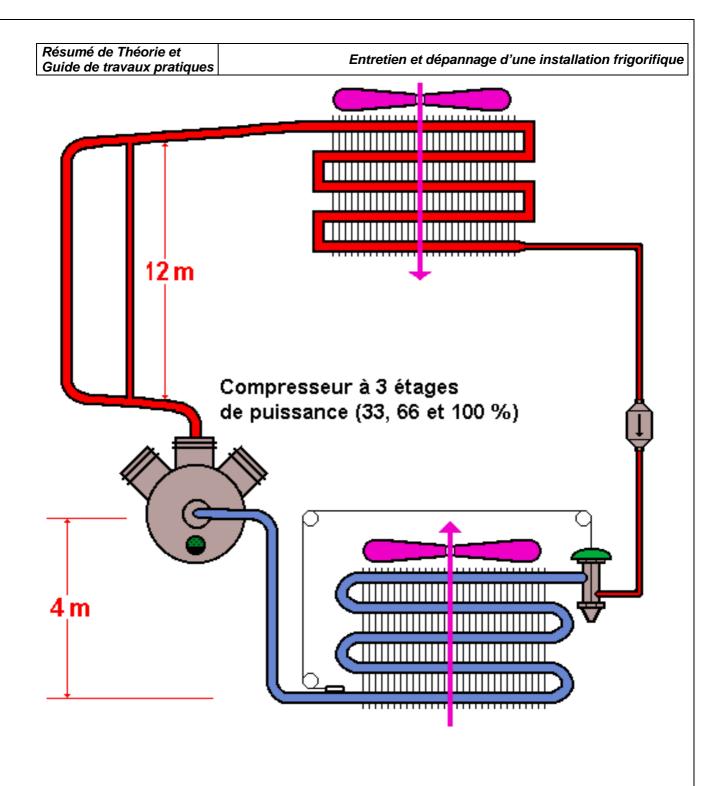
TP2 : 12 erreurs de montage ou de conception

L'huile utilisée pour assurer la lubrification des compresseurs frigorifiques est très miscible

OFPPT/DRIF 153	3/15	5	ì
------------------	------	---	---

avec les fluides frigorigènes courants. Cette forte affinité de l'huile pour le fluide frigorigène est à l'origine de nombreux problèmes, en général mal connus, qui peux provoquer des avaries aussi bien *mécaniques* (bris de clapets, grippage du compresseur...), *électriques* ("grillage" du moteur), que *thermodynamiques* (manque de puissance frigorifique, coupures intempestives des sécurités...).

L'objectif de ce chapitre est d'apporter une réponse à de nombreuses questions que se posent la plupart des dépanneurs...


Travail demander:

Essayez de retrouver *au moins 12 erreurs de montage ou de conception* qui se sont glissées sur le schéma de principe de cette installation frigorifique à détente directe et condensation par air équipée d'un compresseur à 3 étages de puissance :

(33, 66 et 100 %).

(Voir schéma page suivante :)

OFPPT/DRIF 154/155

